оценить состояние дыхательной системы человека можно по
Вдох-выдох: как быстро проверить качество своего дыхания
Мы не можем не дышать, отсутствие дыхания означает отсутствие жизни. Чтобы быть здоровым и энергичным, необходимо иметь ровное и лёгкое дыхание. А какое дыхание у Вас? Может быть, вы не знаете чего-то о себе? Этот тест должен помочь определить, есть ли у Вас проблемы с дыхательной системой.
Узнайте о качестве своего дыхания, ответив на следующие вопросы:
В спокойном состоянии вы дышите через нос или иногда и через рот?
Сколько вдохов и выдохов вы делаете в минуту, находясь в покое?
Есть ли у вас перерывы между вдохом и выдохом, между выдохом и следующим вдохом?
Прислонитесь спиной к стене или к спинке стула – в какой части спины вы ощущаете движение при вдохе и выдохе?
Можете ли вы 20 секунд непрерывно произносить звук «а-а»?
Бывает ли, что вам говорят: вы храпите? Или, может быть, садится ваш голос по утрам?
Быть здоровым означает отсутствие подобных симптомов. Нарушения процесса дыхания чаще всего связанны с болезнью или плохой физической подготовкой. Чтобы быть здоровым, сохранить лёгкость дыхания пройдите спирографию, узнайте всё о функциональном состоянии дыхательной системы.
Если вас интересует здоровье дыхательных путей, часто посещают кашель или насморк, Вы курите, часто работаете на открытом воздухе, занимаетесь спортом приходите в клинику «Медсервис» и пройдите исследование функции внешнего дыхания (спирографию). Процедура безболезненная, безопасная и информативная.
Дышите легко и свободно и будьте здоровы!
Оценить состояние дыхательной системы человека можно по
Уровень соматического здоровья человека определяет энергопотенциал индивида и развитие качества общей выносливости. Физиологической основной являются аэробные возможности, отражающие способности организма доставлять и использовать кислород для энергопродукции при физической работе. Формирование здоровья зависит от наследственности, образа жизни, наличием и выраженностью экзогенных факторов риска и т.д.
Факторами, отрицательно влияющими на состояние организма студентов, являются несоответствие методик обучения возрастным и функциональном возможностям, стрессоры нерациональная организация учебного процесса и питания [1].
В условиях ограниченности адаптационных резервов, свойственной молодому организму, любое увеличение нагрузки, умственной или физической, можно рассматривать как стрессорное воздействие, носящее длительный и устойчивый характер.
Для оценки адаптации студентов к учебным нагрузкам мы исследовали показатели дыхательной системы. В результате установлено, что уровень функционального состояния респираторной системы всех испытуемых соответствует удовлетворительной адаптации. Несмотря на некоторое снижение резервных возможностей дыхательной системы, проявляются достаточно высокие функциональные возможности регуляторных систем организма, что обеспечивает резистентность защитных сил и успешную реализацию функциональных возможности в условиях напряженной умственной и мышечной работы, которую испытывают студенты в процессе учебной деятельности.
Вегетативная нервная система играет важное значение в сохранении постоянства гомеостаза при различных воздействиях окружающей среды. Роль ее заключается в регуляции обмена веществ, возбудимости и автоматии периферических органов и ЦНС [2].
Адаптация организма к физической нагрузке также как и к другим стрессовым факторам обеспечивается регуляторным влиянием нейрогуморальных механизмов симпатической и парасимпатической нервной систем и железами внутренней секреции. Благодаря регуляторному воздействию этих систем, а также изменение метаболических процессов, обеспечивает поддержание гомеостаза в изменившихся условиях. Продолжающееся воздействие на организм стрессовых факторов в свою очередь может влиять на функциональные возможности систем регуляции и изменять адаптационные резервы организма.
Материалы и методы исследования
Исследования проводилось на модуле валеологии, Казахского национального медицинского университете им. С.Д. Асфендиярова. Объектом исследования являлись студенты 1 курса (58 студента). Для оценки функционального состояния организма все студенты были разделены на 2 группы: занимающихся и не занимающихся спортом, у которых определяли следующие показатели дыхательной системы: частота дыхания (ЧД), объем дыхания (ОД), минутный объем дыхания (МОД), жизненная емкость легких (ЖЕЛ), резервный объем вдоха (РОвд), резервный объем выдоха (РОвыд), общую емкость вдоха (ОЕвд).
Эти показатели определяли в нормальных условиях (в спокойном состоянии) и после физической нагрузки. В качестве физической нагрузки применяли Гарвардский степ-тест. Гарвардский степ- тест представляет собой способ для оценки физической работоспособности кардиореспираторной системы.
Результаты исследования и их обсуждение
Полученные данные свидетельствуют о том, что повседневные физические нагрузки обеспечивают экономную функцию дыхательной системы, в состоянии покоя и после нагрузки. Физические нагрузки, как фактор адаптации обеспечивает повышение резистентности организма к экстремальным состояниям.
По результатам исследования у студентов, не занимающихся спортом в обычных условиях частота дыхания в среднем составила 16 раз/мин, после нагрузки 21 раз/мин, среднее значение жизненной емкости легких составил 3,0 л, после нагрузки 3,7 л. У вышеназванных студентов минутный объем дыхания в состоянии покоя в среднем составил 8,5 литров, а при нагрузке 19 л. Дыхательной объем, резервный объем вдоха, резервный объем выдоха, и общая емкость вдоха составляют следующие величины соответственно: 0,6; 1,4; 1,0; и 2 литров в покое. После нагрузки 0,7; 1,8; 1,5; 2,5 л.
У студентов, занимающихся спортом в нормальных условиях частота дыхания в среднем 12 раз/мин, после нагрузки 18 раз/мин, значение жизненной емкости легких составило в среднем 4,8 л., после нагрузки – 5,5 л. У занимающихся спортом студентов минутный объем дыхания находился в покое составил 11 л, после нагрузки – 23,7 л. Легочные объемы в покое, то (дыхательный объем, резервный объем вдоха, резервный объем выдоха, и общая емкость вдоха) были равны следующим показателям соответственно: 0,8; 2,1; 1,9 и 2,9 литров, после нагрузки – 1,1; 2,3; 3,1;3,4 л.
По результатам исследований у студентов, занимающихся и не занимающихся спортом была отмечена разница в физиологических показателях дыхательной системы: функций респираторной системы у спортсменов соответствовали физиологическим закономерностям изменения, а у студентов, не занимающихся спортом показатели дыхания соответствовали обычным значениям. Интенсификация внешнего дыхания наблюдается в основном от углубления дыхания. У людей, занимающихся спортом дыхательные движения бывают на высоком уровне.
Согласно литературным источникам по сравнению с нетренированными людьми у спортсменов наблюдается увеличение ЖЕЛ. Есть данные, что чем выше ЖЕЛ на работу аппарата внешнего дыхания расходуется меньше силы [3].
Этот показатель является важным для оценки функциональных показателей жизненного индекса. Высокий жизненный индекс наблюдается у людей, которые занимаются спортом. У тренированных спортсменов в спокойном состоянии происходит физиологическая экономичность функций. У спортсменов ЧД 12 раз/мин, МОД – 11 л/мин. У здоровых людей частота дыхания в спокойном состоянии в среднем 16 раз мин, при интенсивной мышечной работе МОД у здорового взрослого человека из-за повышения частоты дыхания и ДОР может составить 120 л/мин, у тренированных спортсменов воздухообмен в легких может достичь 150 л/мин и выше. Это говорит о больших резервных возможностях системы дыхания.
Таким образом, работа мышц является результатом учащения дыхания. При учащении дыхания у спортсменов растет и глубина дыхания. Что, является рациональным способом приспособления к нагрузке аппарата дыхания. Под действием физических упражнений резервные возможности дыхания повышаются [4]. При систематических спортивных упражнениях у спортсменов улучшается нейрогуморальная регуляция дыхания, работа дыхательной системы в ходе физической нагрузки начинает работать согласовано с другими системами организма.
Воздухообмен в легких повышается в зависимости от проделанной работы и в результате окислительно-восстановительных процессов в организме. При интенсивной работе газообмен в легких может возрасти до 100/мин и выше по сравнению 6-9 л/мин в состоянии покоя и соответственно возрастает потребность в кислороде. Таким образом, физические упражнения способствует адаптации тканей к гипоксии, тем самым обеспечивая интенсивную работу клеток организма при недостатке кислорода.
Работа мышц приводит к возрастанию глубины и частоты дыхания, что в свою очередь повышает газообмен в легких и обеспечивает кислородную потребность.
У взрослого человека при работе мышц в связи c учащением дыхания возрастает газообмен в легких. Физические упражнения или занятия спортом увеличивают объем газообмена в легких. Как показали некоторые авторы при физической нагрузке у спортсменов интенсивность внешнего дыхания в значительной степени зависят от глубины и в меньшей степени зависят от возрастания частоты дыхания.
По получению данным можно сделать вывод, что уровень показателей дыхания определяют структурно-функциональные адаптационные реакции, происходящие под воздействием физической нагрузки в организме спортсмена [5].
Спортивные упражнения повышают силу мышц, и еще оказывают влияние на адаптацию к состояниям окружающей среды [6]. Под воздействием мышечных нагрузок повышается частота сокращения сердца, мышца сердца сокращается быстрее, давление крови повышается. Во время работы мышц частота дыхания повышается, дыхание углубляется, улучшается свойство газообмена легких. Это приводит к функциональному улучшению кардиореспираторной системы [7]. Для студентов занимающихся спортом характерно увеличение резервных возможностей и экономичность функций дыхательной системы.
2.3.4. Методика оценки функционального состояния дыхательной системы
Для самоконтроля за функциональным состоянием дыхательной системы рекомендуются следующие пробы.
Проба Штанге (задержка дыхания на вдохе). После 5 минут отдыха сидя сделать вдох на 80–90 % от максимального и задержать дыхание. Время отмечается от момента задержки дыхания до ее прекращения. Средним показателем является способность задерживать дыхание на вдохе для нетренированных людей на 40–50 с, для тренированных — на 60–90 с и более. С нарастанием тренированности время задержки дыхания возрастает, при снижении или отсутствии тренированности — снижается. При заболевании или переутомлении это время снижается на значительную величину — до 30–35 с.
Проба Генчи (задержка дыхания на выдохе) выполняется так же, как и проба Штанге, только задержка дыхания производится после полного выдоха. Средним показателем является способность задерживать дыхание на выдохе для нетренированных людей на 25–30 с, для тренированных — 40–60 с и более.
При инфекционных заболеваниях органов кровообращения, дыхания и других, а также после перенапряжения и переутомления, в результате которых ухудшается общее функциональное состояние организма, продолжительность задержки дыхания уменьшается как на вдохе, так и на выдохе.
Частота дыхания – количество дыханий за 1 мин. Ее можно определить по движению грудной клетки. Средняя частота дыхания у здоровых лиц составляет 16–18 раз/мин, у спортсменов — 8–12 раз/мин. В условиях максимальной нагрузки частота дыхания возрастает до 40–60 раз/мин.
2.3.5. Организация и содержание методико-практического занятия
Цель: ознакомиться с методикой оценки функционального состояния сердечно-сосудистой и дыхательной систем.
Оборудование: секундомеры, метроном, тумба (высота от 30 до 50 см), таблицы, протокол занятия.
1. Преподаватель кратко сообщает цель, задачи, структуру занятия.
2. Одновременное выполнение студентами функциональных проб для оценки дыхательной системы:
а) проба задержки дыхания на вдохе. Во время отдыха после пробы результат занести в протокол;
б) одновременный подсчет частоты дыхания в течение одной минуты. Результат занести в протокол;
в) проба задержки дыхания на выдохе. Между пробами задержки дыхания на вдохе и выдохе должно быть время для отдыха. Поэтому после первой пробы рекомендуется сначала подсчитать частоту дыхания, занести результат в протокол (т. е. дать время для восстановления дыхания) и только потом выполнить пробу на выдохе; результат занести в протокол.
3. Одновременное выполнение студентами действий для оценки функционального состояния сердечно-сосудистой системы:
а) подсчет пульса в состоянии покоя. Для техники подсчета пульса рекомендуем пользоваться методикой и рисунками методико-практического занятия «Простейшие методики самооценки работоспособности, усталости, утомления и применения средств физической культуры для их направленной коррекции»;
б) измерение артериального давления. Работу можно выполнять в парах, тройках под руководством и инструкцией последовательности действий преподавателя, результаты занести в протокол;
в) выполнение степ-пробы по Крэшу подготовленным студентом (кой). Студенты ведут наблюдение за техникой выполнения, участвуют в математических расчетах результатов тестирования. Полученные данные записывают в свой протокол.
4. Сопоставление всех полученных величин исследования функционального состояния дыхательной и сердечно-сосудистой систем с рекомендуемыми стандартами (табл. 2.3.1, 2.3.2).
5. Обсуждение результатов методико-практического занятия.
Оценить состояние дыхательной системы человека можно по
Заболевания легких занимают одно из ведущих мест в статистике потерь трудоспособности во всех странах мира (особенно имеющих развитую промышленность). В связи с этим, актуальность проведения исследований в данной предметной области не вызывает сомнений и работы в данном направлении эволюционируют по мере развития средств вычислительной техники, типом датчиков, методов искусственного интеллекта в области диагностики и принятия решений, средств телемедицины.
В частности, в стране и за рубежом на протяжении длительного времени проводятся исследования в области проектирования и эксплуатации приемлемых для клинического применения объективных акустических средств диагностики легочных заболеваний по анализу легочных шумов [30].
В работе [1], например, отмечается: «в успехах пульмонологии большую роль сыграло появление и усиленное развитие объективных методов исследования, прежде всего рентгенографии, спирографии, бронхоскопии. И только аускультация легких продолжает оставаться более искусством, чем наукой, потому что ее результаты зависят от квалификации врача, особенностей его слуха, акустических свойств стетоскопа».
Акустические шумы являются своеобразным индикатором, характеризующим работу легких и состояния организма в целом поскольку обусловлены не только механической работой легких, направленную на обеспечение необходимых концентраций газов в организме, но и зависят от ряда как внешних так и внутренних факторов. Заболевания легких вызывают патологические изменения во всем организме – поэтому их своевременная диагностика в ходе скрининга простыми («бытовыми») методами в процессе массового обследования призвана улучшить качество медицинского обслуживания населения по профилактике и своевременного лечения социально-значимых заболеваний.
В связи с этим, целью исследования являлось изучение применяемых на практике средств, способов и методов, математического аппарата анализа акустического шума для последующей дифференциальной диагностики состояния легких.
Основываются на гносеологическом и семантическом анализе информационных источников в открытой печати.
Типы дыхательных шумов (краткий экскурс)
В описании характера дыхания в медицинской литературе нет единого мнения о том, какие виды дыхания существует и что они собой представляют. Так большинство авторов сходится во мнении, что в норме, над большей частью поверхностей лёгких выслушивается везикулярное дыхание. Однако на основании чего дыхание может быть охарактеризовано как везикулярное, чётких указаний нет. Часть авторов утверждает, что отличительная черта этого типа – вдох, равный 1/3 выдоха. Другие, что везикулярное дыхание – это в первую очередь своеобразный дыхательный шум – непрерывный, равномерный, мягкий, напоминающий звук «ф». Поэтому характер дыхания описывается с учётом всех возможных характеристик.
Пуэрильное дыхание [16] – норма для детей в возрасте до 5 лет. Вдох равен выдоху. Звук сравнительно более громкий и чёткий, чем при везикулярном дыхании (в связи с анатомическими особенностями детей – более тонкая грудная клетка). У детей старше 5 лет и взрослых – патология. Жёсткое дыхание [14] – сопровождает любой бронхит, любое ОРВИ. Жёсткое дыхание сигнализирует о воспалении бронхов или лёгочной ткани. Вдох равен выдоху. Дыхательные шумы – достаточно громкие, грубые. Пуэрильное и жёсткое дыхание нередко достаточно трудно отличить друг от друга. Для этого исследуется его распространённость. Пуэрильное дыхание, как правило, выслушивается равномерно над всей поверхностью лёгких, жёсткое – обычно, локально (соответствует локализации воспалительного очага).
Бронхиальное дыхание [39] также является следствием некоторых заболеваний и представляет собой проведение дыхательных шумов с гортани и трахеи, вследствие определённого изменения лёгочной ткани. Выдох – 1/3 вдоха. Аускультативно – это самый грубый, громкий тип дыхания. Соотношение вдоха и выдоха может для простоты отображен при помощи аускультограммы.
Выделяют также ещё один, более редкий тип – амфорическое дыхание [16]. Оно выслушивается над полостными образованиями лёгких, соединённых с просветом бронха. По звуку оно напоминает звук воздуха, проходящего через узкое горлышко (например, амфоры). Кроме того, выделяют несколько так называемых патологических типов дыхания (это сложившийся термин и в него не включают жёсткое, пуэрильное и бронхиальное, хотя они и не выслушиваются в норме).
К патологическим типам относят [48]:
• Дыхание Чейна-Стокса – глубина дыхания постепенно нарастает, но спустя около 10 дыхательных циклов начинает убывать и в конце концов переходит в апноэ (до 1 минуты). Затем цикл повторяется.
• Дыхание Грокко (диссоциированный тип дыхания) – глубина дыхания постепенно нарастает, но спустя около 10 дыхательных циклов начинает убывать, однако цикл повторяется без перехода в апноэ.
• Дыхание Биота (агонирующий тип дыхания) – несколько обычных дыхательных движений прерываются апноэ (до 30 секунд). Все патологические типы дыхания свидетельствуют о тяжёлом поражении головного мозга (разной этиологии). Прогноз при их выявлении – сомнительный.
При выслушивании хрипов в лёгких [50], оценивают их характер (сухие – влажные) и калибр (крупно-, средне-, мелкопузырчатые).
Сухие хрипы характерны для бронхита. Принципиально выделяют 2 типа сухих хрипов – свистящие и жужжащие. Свистящие хрипы свидетельствуют о сужении просвета (бронхобструктивный синдром, например при астме). Жужжащие возникают при вибрации мокроты в просвете бронха (считается, что она, подобно гитарным струнам пересекает просвет в разных местах и вибрирует при прохождении воздуха). Влажные хрипы – характерны для бронхита или пневмонии (для последней также характерно укорочение перкуторного звука над очагом).
Крепитация [10] – специфический звуковой феномен, строго говоря, не относящийся к хрипам. Крепитация напоминает «хруст снега под ногами», иногда сравнивают её с «шуршанием полиэтилена». Она возникает при поражении терминальных бронхов, бронхиол и альвеол, когда на выдохе происходит слипание альвеол, а на вдохе большое их число расправляется с характерным звуком. Непосредственная причина – нарушение выработки сурфактанта. Крепитация лучше выявляется при глубоком дыхании.
Акустические типовые сигналы дыхательных шумов с краткой характеристикой приведены, например, в банках [4,5].
Средства регистрации информации о дыхательных шумах
Акустические приборы позволяют получать многообразную информацию о состоянии здоровья человека вообще и дыхательной системы в частности. Приборы для проведения аускультации по принципу действия делятся на акустические и электронные. Последние расширяют возможности акустической диагностики, позволяя повысить её объективную сторону, а сохранять информацию для дальнейшего анализа (в том числе специализированным программным обеспечением современных компьютерных систем исскуственного интеллекта и цифровой фильтрации).
Для прослушивания шумов в легких используют стетоскопы или фонендоскопы, которые отличаются от стетоскопов тем, что имеют мембрану на воронке или капсуле. Данный метод не позволяет проводить эту операцию в нескольких местах одновременно на поверхности грудной клетки. Это существенно уменьшает арсенал диагностических приемов, используемых в медицинской практике при обследовании пациентов. Кроме того, полученные в ходе аускультации данные о фактической структуре звуков дыхания оказывается безвозвратно утерянной после окончания диагностики. Компьютерная система регистрации звуков дыхания позволяет сохранить эту информацию и многократно использовать ее для анализа и систематизации полученных данных в последующем. При этом многоканальность и синхронность ввода данных открывает принципиально новые качественные возможности их обработки и анализа [2].
В свое время были разработаны стетоскопы с электрическим усилителем звука [53], однако они не получили распространения, так как трудности заключаются не столько в слабой слышимости, сколько в дифференциации и правильном истолковании сложных звуков при аускультации, что достигается только па основе опыта. Имеющиеся же в настоящее время усилители не обеспечивают равномерного усиления всех частот звука, что приводит к его искажению. Стетоскоп представляет закрытую акустическую систему, в которой основным проводником звука является воздух: в случае сообщения с наружным воздухом или закрытия трубки аускультация становится не возможной. Кожа, к которой приложена воронка стетоскопа, действует как мембрана, чьи акустические свойства меняются от давления; при увеличении давления воронки на кожу лучше проводятся звуки высокой частоты и наоборот; при слишком сильном давлении тормозятся колебания подлежащих тканей. Широкая воронка лучше проводит звуки низкой частоты.
Аускультация как метод исследования должна проводиться по определенным правилам. В первую очередь это касается условий, в которых проводится аускультация. В помещении должно быть тихо, чтобы никакие посторонние шумы не заглушали выслушиваемые врачом звуки, и достаточно тепло, чтобы больной мог находиться без рубашки. Во время аускультации больной стоит или сидит на стуле, в постели,– такое его положение удобнее для врача. Тяжелых больных выслушивают в положении лежа в постели; если проводится аускультация легких, то, выслушав одну половину грудной клетки, больного осторожно поворачивают на другой бок и продолжают аускультацию. На коже над поверхностью выслушивания не должно быть волос, так как трение раструба фонендоскопа или его мембраны о волосы создает дополнительные звуки, затрудняющие анализ аускультируемых звуковых явлений. Во время выслушивания стетоскоп нужно плотно всей окружностью прижать к коже больного, но не оказывать очень большого давления, иначе произойдет ослабление вибрации ткани в зоне прилегания стетоскопа, вследствие чего становятся тише также и выслушиваемые звуки [41].
В настоящее время медицинская промышленность выпускает разнообразные стетоскопы и фонендоскопы, которые в большинстве своем различаются только по внешнему виду. Однако одно из основных правил аускультации требует, чтобы врач всегда пользовался тем аппаратом, к которому он привык. Опытные врачи это знают: если случайно для аускультации больного приходится воспользоваться чужим стетоскопом, то сразу значительно труднее становится качественный анализ выслушиваемых звуков. Последнее требование подчеркивает необходимость достаточных теоретических знаний у врача, чтобы он мог правильно трактовать выслушиваемые звуки, и постоянной тренировки, приобретения навыка выслушивания. Только в этом случае аускультация как метод исследования раскрывает перед врачом все свои возможности [28].
Источником слабых акустических шумов, которые определяются как звуки дыхания (ЗД), являются: трахея, бронхи и легкие. Доказано, что:
— источник ЗД следует рассматривать как распределенный объект, находящийся в замкнутом корпусе, ткани которого влияют на прохождение акустической волны;
— характер звуков дыхания меняется по мере изменения положения приемника на корпусе источника, а также в зависимости от состояния тканей источника;
— установлено существование нескольких частотных диапазонов для индивидуальных проявлений аускультативных признаков. Анализ литературных источников показывает, что частотный диапазон аускультативных признаков очень широк, границы частотных интервалов, отмеченные для отдельных видов аускультативных феноменов, пересекаются.
Самым простым прибором для аускультации является монауральный стетоскоп, представляющий собой трубку, изготовленную из твердого материала, которая имеет на концах раструбы в виде воронок. При проведении аускультации одна из воронок прикладывается к уху врача, вторая воронка – к телу пациента. Недостатком такого прибора является плохая его чувствительность к звукам высокой частоты и неудобство эксплуатации (заключающееся в том, что врачу к пациенту приходится наклоняться при его прослушивании в позе лежа).
Более удобными и сложными считаются бинауральные приборы. Если головкой такого прибора является полая воронка без мембраны, прибор называется бинауральным стетоскопом, с мембраной – фонендоскопом.
Ниже приведено краткое описание типовых устройств и способов аускультации (включая датчики и материалы), используемые в настоящее время.
1. Фонендоскоп – стетоскоп электронный ФСЭ-1М позволяет перенести полученные данные на персональный компьютер, результаты исследований выводятся на экран. ФСЭ-1М располагает датчиком на базе пьезокомпозиционной керамики (ЭКО-1, объемная пьезочувствительность = 1400 – 1500 мкв/Па, емкость 35 пФ) [3].
2. Помехозащищенный акустический датчик для стетоскопа (Патент RU 2071726) [17]. Задачей изобретения является снижение уровня акустических и вибрационных помех в датчике путем их взаимокомпенсации. Технический результат достигается тем, что датчик стетоскопа снабжен второй воздушной камерой, образованной двумя коаксиальными цилиндрами разной высоты с общей плоскостью среза открытых торцов, а микрофон выполнен дифференциальным и установлен в закрытом торце меньшего цилиндра с возможностью контакта каждой стороны его мембраны соответственно с первой и второй воздушными камерами. В этом случае сигнал пропорционален разнице акустических давлений в полости внутреннего цилиндра и в полости между цилиндрами [37].
3. Аппаратно-программный комплекс «ПФТ» состоит из акустического датчика, входного устройства, портативного персонального компьютера и специализированного пакета программ. Акустический датчик содержит малогабаритный электретный микрофон (W62A) с выполненной из эбонита стетоскопической насадкой, имеющей коническую камеру с диаметром основания 20 мм и глубиной 5 мм (угол раскрытия 120о. Для компенсации прилагаемого статического давления в дне стетоскопической камеры выполнен капиллярный канал (диаметр 0,75 мм, длина 2,5 мм). Акустический датчик обычно устанавливается на боковую поверхность шеи и обследуемый своей рукой удерживает его, прижимая стетоскопическую головку датчика к поверхности тела [40].
4. Пьезокерамическая пленка. Основными достоинствами пьезоплёнки по сравнению с пьезокерамикой являются её высокая эластичность, малый удельный вес, ударопрочность, возможность изготовления чувствительных элементов большой площади, малое волновое сопротивление. Основная деформация растяжения – сжатия пьезоэлемента под действием звукового давления происходит у них в направлении ориентации плёнки [35].
5. Пьезотранзисторные микрофоны [23] отличаются высокой чувствительностью при малых габаритах и достаточно хорошей частотной характеристикой, однако имеют довольно высокий уровень собственных шумов. Для дальнейшего усовершенствования пьезотранзисторных микрофонов необходимо создание специальных транзисторных структур, обладающих низким уровнем собственных шумов в низкочастотном диапазоне.
6. Датчик электронного стетофонендоскопа (Патент RU 2188578) [20]. Датчик электронного стетофонендоскопа, содержащий корпус с устройством обжатия кабеля, соединенный с резонатором, выполненным из материала со скоростью распространения звуковых колебаний в нем, большей скорости распространения звуковых колебаний в оболочке кабеля и установленный в корпусе электроакустический преобразователь, отличающийся тем, что на корпусе и резонаторе плотно закреплен кожух, в отверстие которого плотно продет кабель, при этом кожух выполнен из материала со скоростью распространения звуковых колебаний в нем, равной скорости распространения звуковых колебаний в оболочке кабеля, лежащая в дистальной плоскости поверхность касания резонатора выполнена в виде широкого кольца с рядом концентрических канавок, а в теле резонатора от внутренней части его раскрыва до наружной поверхности выполнены сквозные отверстия диаметром не более 0,5 и длиной не менее 5 мм.
7. Беспроводной электронный стетоскоп с модулем Bluetooth [38]. Остановив свой выбор на стандарте беспроводной связи Bluetooth, и руководствуясь стремлением сохранить принятую методику проведения прослушивания обычным и электронным стетоскопом, была разработана структурная схема нового многофункционального диагностического прибора. В качестве прототипа беспроводного прибора акустического контроля был использован электронный стетоскоп ФСЭ-1М с датчиком на базе пьезокомпозиционной керамики. Использование контактного пьезокерамического датчика принципиально улучшает снятие акустического сигнала с требуемого участка поверхности, исключая влияние внешних акустических помех. Однако принцип построения структурной схемы не исключает возможности использование микрофонов, как, например, в датчике в приборе для снятия акустической волны
8. Электронно-акустический интерфейс для стетоскопа (RU 2383304) [54]. Электронно-акустический интерфейс содержит акустический преобразователь, включающий первую и вторую гибкие трубки, выполненные с возможностью соединения с головкой стетоскопа, первый микрофон, установленный во второй трубке, усилитель и источник питания, размещенные в корпусе электронного преобразователя и, по меньшей мере, один динамик. Внутри второй трубки встроена и зафиксирована втулкой третья трубки, второй микрофон размещен в первой трубке, первый и второй микрофоны соединены последовательно с регулятором баланса и дифференциальным усилителем. Использование изобретения позволяет повысить помехоустойчивость конструкции, ремонтопригодность и удобство сборки, а также обеспечить диагностику в разных частотных диапазонах.
9. Индивидуальный электронный стетоскоп (RU 2316256) содержит акустический приемник, панель управления, блок микропроцессора, блок эталонных фонограмм и телефоны [24]. Индивидуальный электронный стетоскоп работает следующим образом. В соответствии с инструкцией по эксплуатации устройства пользователь (преимущественно не имеющий специальной медицинской подготовки) закрепляет на внешней поверхности своего тела элементы акустического приемника, а посредством панели управления устанавливает параметры режима работы акустического приемника и устанавливает соответствующую фонограмму микропроцессором из блока эталонных фонограмм. При этом в реальном времени в одном из телефонов прослушиваются звуковые проявления функционирования соответствующего внутреннего органа, а в другом телефоне звучит соответствующая индивидуальная фонограмма в норме. Синхронизация звучания обеспечивается связью блока микропроцессора с выходом акустического приемника. В случае превышения установленного допустимого отклонения параметров звучания от нормы микропроцессором формируется тревожный сигнал, поступающий в соответствующий телефон.
10. Устройство для аускультации (Патент RU 2062047) [42]. Устройство для аускультации, содержащее последовательно соединенные акустический датчик, электронный блок, снабженный фильтрами с частотой полосы пропускания, соответствующей диапазону частот шумов диагностируемых органов, и электроразъемами для подключения дополнительных головных телефонов и регистрирующих устройств и головные телефоны, отличающееся тем, что акустический датчик выполнен в виде приемника колебательного ускорения, подвешенного через амортизатор в корпусе датчика с возможностью выступания основания-аппликатора приемника на величину не более половины высоты приемника колебательного ускорения, а на основании-аппликаторе укреплены на опорах биморфные пьезоэлектрические элементы и электромагнитный экран.
11. Многоканальный электронный стетоскоп (Патент RU 2229843) [32]. Многоканальный электронный стетоскоп, содержащий акустический приемник, блок фильтров, регистратор, аналого-цифровой преобразователь, блок анализа и блок эталонных фонограмм, отличающийся тем, что в него введены блок управления, первый и второй блоки ключей, управляющие входы которых соединены с соответствующим выходом блока управления, акустический приемник и блок фильтров выполнены многоканальными и включены последовательно, причем их управляющие входы соединены с соответствующими выходами блока управления, аналого-цифровой преобразователь и блок анализа выполнены многоканальными и включены последовательно, причем выход блока фильтров через первый блок ключей подключен к входу аналого-цифрового преобразователя, регистратор выполнен многоканальным и подключен к выходу первого блока ключей, блок эталонных фонограмм выполнен многоканальным, причем его управляющий вход соединен с соответствующим выходом блока управления, а выход через второй блок ключей подключен к другому входу блока анализа.
12. Электронно-акустический интерфейс для стетоскопа (RU 2355312) [55]. Электронно-акустический интерфейс для стетоскопа, выполненный с электронным и акустическим каналами, содержащий корпус, связанный с гибким трубчатым элементом для соединения с головкой стетоскопа, включающим первую трубку, и установленные в корпусе источник питания, последовательно соединенные микрофон, регулируемый усилитель и динамик, образующие с указанной трубкой электронный канал, при этом электронный и акустический каналы подключены соответственно к первому и второму выходам переключателя каналов, отличающийся тем, что в гибкий трубчатый элемент введена вторая трубка, образующая акустический канал, микрофон установлен в первой трубке гибкого трубчатого элемента, переключатель снабжен отверстием и регулировочным винтом, выполненными с возможностью изменения сечения отверстия при соединении с акустическим каналом через переключатель в электронном режиме работы, причем одни концы первой и второй трубок гибкого трубчатого элемента встроены в корпус, а другие концы выполнены с возможностью соединения с головкой стетоскопа пользователя. Регулируемый усилитель выполнен с электрическим линейным выходом для подключения внешних электронных устройств, в том числе записи и/или анализа звука.
Фундаментальное описание аппаратуры для исследования акустических характеристик легких, позволяющей решать проблемы разработки и применения специализированной акустической технологии приведено в работе [30].
Методы анализа акустического шума диагностики состояний легких
История перкуссии легких как основного аналитического метода исследования патологических состояний легких достаточно объемно представлена в работе [25] (до 2005 года), Ретроспективно, по данным 54 отечественных и зарубежных литературных, охватывающих почти двух вековую историю метода. Анализ работы доказывает необходимость применения современных компьютерным средств и достижений в области исскуственного интеллекта для проектирования и эксплуатации специализированных систем поддержки диагностических решений на основе результатов, достигнутых в технических приложениях (своеобразный «бумеранг» бионики).
Шумы лёгких – это звуковые явления, возникающие в связи с актом дыхания, называются дыхательными шумами (murmurarespiratoria). Различают основные и дополнительные, или побочные, дыхательные шумы. Вопросы аускультации легких достаточно подробно рассмотрены в работе [21] (в том числе, описаны нормальные и патологические основные дыхательные шумы). Классическое описание способов традиционной аускультации легких, легочных шумов и типов дыхания в норме и патологии приведено в работе [7].
Анализ существующих коллекций дыхательных шумов (ДШ) [6] показывает, что они различаются основными параметрами записи: частотой квантования по уровню и по времени, длительностью, методикой обработки, а также форматами сохранения. По каждому аускультативному феномену в коллекции обычно присутствует одна запись, что затрудняет оценку характеристик классов аускультативных феноменов.
В связи с этим, для решения проблемы автоматического анализа ЗД необходимо существенно расширить архив унифицированных записей паттернов (образцов) звуков дыхания и методику его расширения. При этом необходимо учитывать следующие требования к параметрам модели паттерна ДШ [2]: частота дискретизации для регистрирацииь аускультативных феномены в низкочастотном (до 5500 Гц) и высокочастотном (до 13000 Гц) диапазонах; разрядность аналого-цифрового преобразования акустической волны 16 бит. Это позволит анализировать акустическую волну с амплитудой менее 20 дБ; длительность паттерна 1,5сек