почему в опыте короткого замыкания трансформатора можно пренебречь потерями в стали
ОПЫТ КОРОТКОГО ЗАМЫКАНИЯ
Если подключить первичную обмотку трансформатора к напряжению сети, а зажимы его вторичной обмотки замкнуть накоротко, то это приведет к опасному явлению короткого замыкания трансформатора. Токи короткого замыкания выделяют большое количество тепла в обмотках, что может привести к повреждению изоляции обмоток. Механические усилия, возникающие в обмотках трансформатора при коротких замыканиях, могут иногда привести к разрушению обмоток.
Если же зажимы вторичной обмотки трансформатора замкнуть накоротко, а первичную обмотку подключить к пониженному напряжению, чтобы ток короткого замыкания IК.З. был бы равен номинальному току Iном, то при этом с трансформатором ничего опасного не произойдет. Этот опыт называетсяопытом короткого замыкания. Напряжение, под которое включается первичная обмотка трансформатора при опыте короткого замыкания, составляет несколько процентов от номинального напряжения этой обмотки и называетсянапряжением короткого замыкания; обозначается U К.З.
Силовые трансформаторы имеют напряжение короткого замыкания, равное 5—10%.
На рис. 2 дана схема опыта короткого замыкания. Вольтметр, включенный в цепь первичной обмотки, показывает напряжение короткого замыкания UКЗ. Амперметры измеряют номинальные токи первичной и вторичной обмоток I1nom и I2nom. Ваттметр измеряет мощность потерь при коротком замыкании РКЗ.
Выше было сказано, что магнитный поток трансформатора пропорционален величине напряжения первичной обмотки трансформатора.
При опыте короткого замыкания магнитный поток в сердечнике мал, так как напряжение короткого замыкания во много раз меньше номинального напряжения. Поэтому потерями в стали в этом случае можно пренебречь и считать, что мощность при этом опыте идет на покрытие потерь в обмотках трансформатора.
По данным опыта короткого замыкания определяют коэффициент мощности при коротком замыкании cos φ, активные и реактивные сопротивления обмоток .
В трансформаторе имеют место потери. Они слагаются из потерь в обмотках и потерь в стали сердечника. Потери в обмотках трансформатора называются также электрическими потерями. Они пропорциональны квадрату тока. Электрические потери определяют по показаниям ваттметра из опыта короткого замыкания. Потери в стали, называемые также магнитными потерями, зависят от частоты сети и величины магнитной индукции. Магнитные потери определяют по показаниям ваттметра из опыта холостого хода трансформатора.
Общие потери Δ Р равны сумме электрических Рэ и магнитных Рм потерь: Δ Р =Рэ+ Рм
ОПЫТ КОРОТКОГО ЗАМЫКАНИЯ
Если подключить первичную обмотку трансформатора к напряжению сети, а зажимы его вторичной обмотки замкнуть накоротко, то это приведет к опасному явлению короткого замыкания трансформатора. Токи короткого замыкания выделяют большое количество тепла в обмотках, что может привести к повреждению изоляции обмоток. Механические усилия, возникающие в обмотках трансформатора при коротких замыканиях, могут иногда привести к разрушению обмоток.
Если же зажимы вторичной обмотки трансформатора замкнуть накоротко, а первичную обмотку подключить к пониженному напряжению, чтобы ток короткого замыкания IК.З. был бы равен номинальному току Iном, то при этом с трансформатором ничего опасного не произойдет. Этот опыт называетсяопытом короткого замыкания. Напряжение, под которое включается первичная обмотка трансформатора при опыте короткого замыкания, составляет несколько процентов от номинального напряжения этой обмотки и называетсянапряжением короткого замыкания; обозначается U К.З.
Силовые трансформаторы имеют напряжение короткого замыкания, равное 5—10%.
На рис. 2 дана схема опыта короткого замыкания. Вольтметр, включенный в цепь первичной обмотки, показывает напряжение короткого замыкания UКЗ. Амперметры измеряют номинальные токи первичной и вторичной обмоток I1nom и I2nom. Ваттметр измеряет мощность потерь при коротком замыкании РКЗ.
Выше было сказано, что магнитный поток трансформатора пропорционален величине напряжения первичной обмотки трансформатора.
При опыте короткого замыкания магнитный поток в сердечнике мал, так как напряжение короткого замыкания во много раз меньше номинального напряжения. Поэтому потерями в стали в этом случае можно пренебречь и считать, что мощность при этом опыте идет на покрытие потерь в обмотках трансформатора.
По данным опыта короткого замыкания определяют коэффициент мощности при коротком замыкании cos φ, активные и реактивные сопротивления обмоток .
В трансформаторе имеют место потери. Они слагаются из потерь в обмотках и потерь в стали сердечника. Потери в обмотках трансформатора называются также электрическими потерями. Они пропорциональны квадрату тока. Электрические потери определяют по показаниям ваттметра из опыта короткого замыкания. Потери в стали, называемые также магнитными потерями, зависят от частоты сети и величины магнитной индукции. Магнитные потери определяют по показаниям ваттметра из опыта холостого хода трансформатора.
Общие потери Δ Р равны сумме электрических Рэ и магнитных Рм потерь: Δ Р =Рэ+ Рм
Опыт короткого замыкания
Опыт холостого хода.
Схема проведения опыта холостого хода приведена на рис. 4.10.
Рис. 4.10. Схема проведения опыта холостого хода
Первичная обмотка включена на номинальное напряжение, значение которого определяется по паспорту трансформатора, U10=U1ном и по ней протекает ток холостого ходаI0 ≈ (5 10)%I1ном. Трансформатор при этом потребляет от сети некоторую активную мощность Р0, измеряемую ваттметром.
Во вторичную обмотку трансформатора включен вольтметр, сопротивление которого очень велико, и ток в этой обмотке практически равен нулю I20 0, а напряжениеU20, измеряемое вольтметром V2, равно ЭДС вторичной обмотки, т.е. U20= E2.
Коэффициент трансформации трансформатора определяется в соответствии с выражением (4.6)
Мощность Ро, потребляемая трансформатором и измеряемая ваттметром, расходуется на нагрев обмотки (потери в меди) ∆РМ и на нагрев сердечника (потери в стали) ∆РС
Потерями в меди ∆РМ в этом опыте можно пренебречь, т.к. во вторичной обмотке они отсутствуют ∆РМ2= =0, а в первичной – они малы по сравнению с номинальными, вследствие малости тока холостого хода I10
Следовательно, мощность,потребляемая трансформатором в опыте холостого хода, равна потерям в сердечнике трансформатора:
Следовательно, потери в сердечнике трансформатора пропорциональны квадрату приложенного напряжения:
Так как в опыте холостого хода к первичной обмотке прикладываетсяноминальноенапряжение, то потери в сердечнике в этом опыте равны номинальным, т.е. Р0=∆РС НОМ.
Эти потери возникают при циклическом перемагничивании сердечника вследствие явления гистерезиса и вихревых токов.
Полное сопротивление сердечника Z0определяется как:
Величину активного сопротивления сердечникаR0, учитывающего тепловые потери электрической энергии в сердечнике, находят по выражению
Индуктивное сопротивление сердечника: Х0=
При нахождении угола магнитных потерь в сердечнике α принимается, что вектора напряжения U1 и противо- ЭДС (-Е1) совпадают по направлению. В этом случае α можно определить, как
где S0=U10I0 – полная мощность трансформатора в режиме холостого хода.
φ10 – угол сдвига по фазе между током I0и напряжением U1первичной обмотки.
Схема проведения опыта короткого замыкания представлена на рис. 4.11
Рис. 4.11. Схема проведения опыта короткого замыкания
Во вторичную обмотку трансформатора включен амперметр, сопротивление которого практически равно нулю, т.е. вторичная обмотка фактически замкнута накоротко, U2К =0.
Такое замыкание вторичной обмотки при подаче на первичную обмотку номинального напряжения приведет к возникновению значительных токов, которые будут нагревать провода обмоток, вплоть до выхода трансформатора из строя.
Поэтому, при проведении опыта короткого замыкания напряжение, подводимое к первичной обмотке, постепенно повышаютс помощью автотрансформатора от нуля до напряжения U1К, при котором в первичной и вторичной обмотках устанавливаются номинальные токи I1К =I1HOM,
I2К = I2HOM, значения которых берутся из паспорта трансформатора.
Напряжение U1К, соответствующее номинальным токам в обмотках, называется напряжением короткого замыкания. Оно невелико, составляет несколько процентов от номинального (U1К ≈5 10%U1HOM) и полностью уравновешивается падением напряжения на сопротивлениях обмоток трансформатора.
МощностьРК, потребляемая трансформатором и измеряемая ваттметром в опыте короткого замыкания, расходуется на нагрев обмоток (потери в меди) ∆РМ и на нагрев сердечника (потери в стали) ∆РС:
Как было показано в опыте холостого хода, потери в сердечнике трансформатора пропорциональны квадрату приложенного напряжения. Так как напряжение, подаваемое на трансформатор в опыте короткого замыкания мало, по сравнению с номинальным, то потерями в стали можно пренебречь и считать, что мощность, измеренная в этом опыте, будет равна потерям в обмотках трансформатора, т.е. потерям в меди:
где RK – суммарное активное сопротивление обмоток трансформатора.
Так как опыт короткого замыкания проводится при номинальных токах обмоток, то потери в обмотках трансформатора в этом опыте равны номинальным, т.е. РК=∆РМ НОМ.
Суммарные активное, полное и индуктивное сопротивления обмоток трансформатораRK, ZKи XKрассчитываются в следующем порядке:
Опыт короткого замыкания трансформатора
В электротехнике систематически проводятся испытания приборов и оборудования на устойчивость к электрическим и динамическим нагрузкам. Одной из таких проверок является опыт короткого замыкания трансформатора. В процессе проверки ток в первичной обмотке остается со своим первоначальным значением, а вторичной обмотке устраивается искусственное короткое замыкание. Данное мероприятие дает возможность определить номинальный ток во вторичной обмотке, потери мощности проводников, величину падения потенциала внутреннего сопротивления трансформаторного устройства. Опыты холостого хода и короткого замыкания позволяют установить не только электрические, но и магнитные потери.
Какие параметры определяются в ходе опыта
В качестве примера можно рассмотреть обычный однофазный трансформатор. При выполнении данного исследования производится специальное КЗ обмотки № 2. В обмотку № 1 напряжение подается с заниженным значением, чтобы не причинить вреда трансформатору.
Когда проводится опыт короткого замыкания однофазного трансформатора – устанавливается специальный режим, позволяющий определить несколько основных параметров:
Физические процессы во время исследования
Опыт короткого замыкания проводят как специальную испытательную процедуру, для которой и предназначен трансформатор. В этом случае к обмотке № 1 подключается номинальный ток, а вторичная обмотка попадает под действие аварийного режима. В ходе проведения данного мероприятия определяется номинальный ток в обмотке № 2, потерянные мощности в проводниках и спад напряжения внутреннего сопротивления прибора.
После того как создано короткое замыкание трансформатора, ток в обмотке-2 будет ограничивать лишь ее незначительное внутреннее сопротивление. Следовательно, даже при небольшой величине ЭДС Е2, показатель тока I2 может возрасти до опасного предела. Как правило, это приводит к перегреву обмоточных проводов, разрушению изоляционного слоя и аварии трансформаторного устройства.
С учетом этих условий, опыт проводится при нулевом входном напряжении трансформатора или U1 = 0. Далее потенциал в обмотке-1 постепенно увеличивается до показателя U1k, когда ток в этом же месте подходит к своему установленному номиналу. В это же время ток в обмотке-2 измеряется амперметром А2 и условно принимается равным номиналу. Параметр U1k имеет название напряжения короткого замыкания.
Во время опыта определенное напряжение U1k в обмотке № 1 будет незначительным и составит всего 5-10% от номинала. В связи с этим, действующая величина ЭДС Е2 во вторичной обмотке также будет небольшой – в пределах 2-5%. В пропорции со значением ЭДС происходит снижение магнитного потока, а, в связи с этим, и потерь мощности в магнитопроводе Рс. Поэтому ваттметр, измеряющий мощность, покажет лишь количество потерь в проводниках Рпр.
Важную роль играет уже рассмотренное внутреннее сопротивление трансформатора, значение которого используется при составлении схемы замещения в виде векторной диаграммы. Эта диаграмма дает возможность установить снижение выходного напряжения трансформатора, благодаря падению напряжения комплексного сопротивления.
Для устройств мощностью свыше 1000 В*А, опыт холостого хода и короткого замыкания трансформатора дает возможность проконтролировать величину коэффициента трансформации. В аварийном режиме у таких приборов можно не учитывать холостой ход. Данные расчеты не годятся для трансформаторов малой мощности, поскольку их параметры существенно отличаются от мощных преобразовательных устройств, в том числе и трёхфазного прибора.
Выполнение опыта КЗ на практике
При подключении обмотки-1 трансформатора к сети и замыкании обмотки-2 на клеммах, наступит опасный режим, известный как короткое замыкание. Под влиянием токов провода обмоток выделяют большой объем теплоты, пагубно воздействующий на изоляцию. В аварийном режиме нередко возникают механические напряжения, разрушающие трансформаторные обмотки.
Во избежание разрушительного воздействия полных токов, обмотка № 2 все также замыкается накоротко, а к обмотке-1 выполняется подводка сниженного напряжения. В этом случае ток КЗ становится равным величине номинала, при котором трансформатор обычно и работает. То есть, во время проверки с ним ничего не произойдет.
Данная процедура известна как опыт короткого замыкания трансформатора, когда потенциал подключенной обмотки-1 будет равно всего лишь нескольким процентам от номинала. Оно получило название напряжения короткого замыкания. Этот показатель у силовых устройств, в том числе у трехфазного трансформатора, равняется 5-10% от номинального значения. Полученное значение измеряется вольтметром, подключенным в цепь первичной обмотки. Дополнительно устанавливаются амперметры для замеров номинальных токов в обеих обмотках, а ваттметр учитывает мощность потерь, выявленных во время короткого замыкания.
Ранее уже отмечалось, что величина магнитного потока трансформатора будет пропорциональна напряжению в его первичной обмотке. Во время проведения опыта КЗ его значение в сердечнике слишком маленькое, поскольку напряжение в данном режиме, во много раз ниже номинала. В связи с этим, потери в стальных пластинках можно не учитывать и условно считать основным назначением мощности перекрытие потерь в трансформаторных обмотках.
Используемая схема опыта короткого замыкания и ее результаты создают предпосылки для определения коэффициента мощности cos φ, активного и реактивного сопротивления обмоток.
В любых трансформаторах определяют так называемые обязательные потери. Они включают в себя потери в обмотках и стальном сердечнике. Первая часть относится к категории электрических потерь, пропорциональных квадрату тока. Они определяются показаниями ваттметра, полученными в процессе опыта. Вторая часть представляет собой магнитные потери, связанные с частотой данной электрической сети и значением магнитной индукции. Данные потери также определяет ваттметр, когда трансформатор вводится в режим холостого хода.
Проводимые исследования позволяют установить коэффициент полезного действия трансформатора. При его определении нужно активную мощность обмотки-2, соотнести с мощностью обмотки № 1. КПД трансформаторных устройств достаточно высокий и в некоторых случаях доходит до 98-99%.
Режим короткого замыкания трансформатора
Напряжение короткого замыкания трансформатора
Как проводится и назначение опыта короткого замыкания трансформатора, методика расчета данных
При эксплуатации трансформаторов возникают различного рода потери, которые негативно сказываются на КПД устройства. Одним из методов проверки эффективности действия является проведение опыта короткого замыкания трансформатора. В результате испытания устанавливаются параметры эквивалентной цепи и потери в ней. Проверка обрыва и короткого замыкания (КЗ) на таких изделиях очень экономична и удобна, потому что выполняется при отсутствии нагрузки.
Назначение опыта короткого замыкания
Испытание на обрыв при отсутствии нагрузки выполняется для определения потерь в сердечнике без нагрузки по току.
Суть испытания заключается в том, что обмотка высокого напряжения остаётся разомкнутой в то время, как выходная обмотка подключается к обычной сети потребителя. Туда же подсоединяются и необходимые измерительные приборы – ваттметр, амперметр и вольтметр. В результате такого соединения, внешнее напряжение, которое прикладывается к устройству, медленно увеличивается от нуля до своего номинального значения.
С этой целью в цепь подключается дополнительный автотрансформатор со скользящими контактами.
Показания всех приборов фиксируются в момент, когда напряжение тестирования достигает необходимого значения в выходной цепи. Физическая сущность результатов замеров такова:
Как проводится
Для высоковольтной обмотки задаётся паспортное значение холостого хода. Оно устанавливается по рекомендуемым величинам угла сдвига фаз (sinΦ0 и cosΦ0; индекс указывает на то, что мощность трансформатора определяется в режиме холостого хода).
Далее согласно показаниям вольтметра выполняется измерение параметров шунтирующих эквивалентных цепей. Они относятся к низковольтной обмотке, поэтому тестирование разомкнутой цепи устанавливает и потери в сердечнике, и параметры шунта эквивалентной цепи.
Правильная схема испытания предполагает, что при низком напряжения трансформатор находится в режиме КЗ. Ваттметр, вольтметр и амперметр подключены с высоковольтной стороны. Сигнал подается в силовую схему и увеличивается от нуля до тех пор, пока показания амперметра не будут равны номинальному току. В этот момент снимаются показания всех приборов, причём на амперметре будет показано значение первичного эквивалента тока полной нагрузки, а на ваттметре – потери мощности в проводниках и сердечнике.
Методика расчёта напряжения, потерь и сопротивления КЗ
Расчёты ведутся в следующей последовательности:
Здесь V1 – показания вольтметра на обмотке низкого напряжения.
Менее точно мощность W может устанавливаться непосредственно по показаниям ваттметра.
Объясняется это тем, что напряжение, приложенное для появления тока полной нагрузки, хоть и мало по сравнению с номинальным, но всё же присутствует на обмотках.
Полученные данные соответствуют тем, которые относятся к стороне высокого напряжения трансформатора. Таким образом, в результате испытания на КЗ определяются потери в проводниках а, а также его приблизительные эквивалентное и реактивное сопротивление.
В результате анализа полученной информации можно определить зависимость потерь от тока холостого хода и напряжения на вторичной обмотке.
Важно также, что общие потери трансформатора зависят от его реактивного сопротивления, и не зависят от значений фазового угла между напряжением и током.
Примеры расчётов
Многообразие ситуаций, при которых целесообразно проводить тест короткого замыкания, рассматривается на страницах журнала Voltland.
Исходными данными для расчётов являются:
Полагаем, что подвод потенциала подводится пошагово, до тех пор, пока на подключенном амперметре не будет достигнуто значение тока полной вторичной нагрузки.
Приведём результаты применительно к трёхфазному трансформатору, рассчитанному на напряжение U = 480 В, с реактивной мощностью 100 КВА и реактивным напряжением 13800 В.
Полный ток короткого замыкания во вторичной цепи:
I = 1000 / 1,732 × U = 1,202 (А).
При показании вольтметра U1 =793,5 В процент потерь значений полного сопротивления будет
Δ Z = 793,5 / 13800 = 0,0575.
Следовательно, процент потерь составляет 5,75%. Это показывает, что в случае неисправности трёхфазного соединения на вторичной обмотке появится максимальный ток короткого замыкания, величина которого:
Максимальный ток повреждения Imax на вторичных клеммах:
По вычисленному значению Imax выбираются характеристики средств защиты агрегата от перегрузки, в частности, главного выключателя, который должен быть установлен в цепи вторичной обмотки.
Заключение
Данные вышеприведенных расчётов применяются преимущественно при оценке значений и динамики поведения токов короткого замыкания. Эти токи создают серьёзную опасность для функционирования систем распределения энергии, а также для разработки и применения средств защиты. При проектировании и изготовлении данного оборудования трёхфазные токи короткого замыкания являются основными эталонными величинами в системе. Устройства, которые прерывают указанные токи, подключаются к электрической цепи, обеспечивая автоматическую защиту трансформатора от повреждения.
При проведении опыта короткого замыкания следует придерживаться правил техники безопасности. Они оговорены Правилами эксплуатации энергоустановок ПУЭ 1.8.16. Тестирование может выполняться только предварительно поверенной техникой, применение которой допустимо по условиям испытания.