с квантовых позиций можно объяснить явление

Тест по физике

1) Если свет падает из оптически прозрачного вещества с показателем преломления 2,0 в вакуум под углом падения 90°, то синус угла преломления будет равен:

Выберите один ответ:
а) 2,0
б) 0,67
в) 0,45
г) 0,5

2)Фокусное расстояние линзы, оптическая сила которой равна 2 дптр, равно:

Выберите один ответ:
а) 20 см
б) 2 м
в) 0,5 м
г) 0,5 см

3)Кинетическая энергия тела массой 3 кг, движущегося со скоростью 4 м/с, равна:

Выберите один ответ:
а) 12 Дж
б) 48 Дж
в) 24 Дж
г) 6 Дж

4)Электрический ток в полупроводниках создается:

Выберите один ответ:
а) электронами и дырками
б) только электронами
в) положительными ионами
г) отрицательными ионами

5) Работа силы при равномерном поднятии груза массой 2 кг на высоту 0,5 м равна:

Выберите один ответ:
а) 1 кДж
б) 2,5 кДж
в) 1 Дж
г) 10 Дж

6)Количество теплоты, выделяющееся за 10 с, в медном проводнике сопротивлением 8 Ом при силе тока в нем 2 А, равно:

Выберите один ответ:
а) 40 Дж
б) 320 Дж
в) 160 Дж
г) 80 Дж

7)Явление вырывания электронов из вещества под действием света называется:

Выберите один ответ:
а) тепловое излучение
б) фотоэффект
в) давление света
г) интерференция

8)Сила тока в вольфрамовой спирали равна 0,4 А. Заряд, переносимый через поперечное сечение спирали в течение 50 секунд равен:

Выберите один ответ:
а) 0,04 Кл
б) 20 Кл
в) 4 Кл
г) 120 Кл

9)Расстояние между двумя точечными электрическими зарядами увеличили в 3 раза. Сила взаимодействия между ними:

Выберите один ответ:
а) не изменилась
б) увеличилась в 3 раза
в) уменьшилась в 9 раз
г) уменьшилась в 3 раза

10)С квантовых позиций можно объяснить явление:

Выберите один ответ:
а) дисперсии
б) фотоэффекта
в) дифракции
г) интерференции

11)За 3 с магнитный поток, пронизывающий проволочную рамку, равномерно увеличился с 6 Вб до 9 Вб. Значение ЭДС индукции в рамке равно:

Выберите один ответ:
а) 9 В
б) 3 В
в) 6 В
г) 1 В

12)Значение силы переменного тока, измеренное в амперах, задано уравнением i = 10sin30πt. Правильным является утверждение:

Выберите один ответ:
а) начальная фаза π/2
б) период 0,4 с
в) амплитуда силы тока 10 А
г) частота 25 Гц

13)Температура воздуха при конденсации водяного пара, находящегося в воздухе:

Выберите один ответ:
а) определенного ответа дать нельзя
б) понижается
в) не изменяется
г) повышается

14)По шкале Кельвина вода кипит при температуре:

Выберите один ответ:
а) 300 К
б) 100 К
в) 373 К
г) 273 К

15)Тело движется по инерции, если силы, действующие на него:

Выберите один ответ:
а) отсутствуют или скомпенсированы
б) равнодействующая всех сил постоянна по направлению
в) отсутствуют
г) скомпенсированы
д) действуют постоянно

16)Расстояние между пластинами плоского конденсатора увеличили в 2 раза. Емкость конденсатора:

Выберите один ответ:
а) уменьшилась в 2 раза
б) не изменилась
в) увеличилась в 2 раза
г) увеличилась в 4 раза

17)С волновой точки зрения удается объяснить явление:

Выберите один ответ:
а) дифракции
б) фотоэффекта
в) конечное значение скорости света
г) теплового излучения

18)КПД идеального теплового двигателя 30%. Газ получил от нагревателя 70 кДж теплоты. Холодильнику было отдано количество теплоты:

Выберите один ответ:
а) 40 Дж
б) 49 кДж
в) 0 Дж
г) 7 кДж

19)Если на тело массой 5 кг действует сила 10 Н, то тело движется:

Выберите один ответ:
а) ускоренно со скоростью 2 м/с
б) равномерно со скоростью 2 м/с
в) равноускоренно с ускорением 2 м/с2
г) со скоростью 0 м/с

20)Явление возникновения ЭДС индукции в контуре при изменении в нем электрического тока называется:

Выберите один ответ:
а) электромагнитная индукция
б) индуктивность
в) самоиндукция
г) фотоэффект

Источник

Естествознание. 10 класс

Конспект урока

Естествознание, 10 класс

Урок 14. Корпускулярно-волновой дуализм

Перечень вопросов, рассматриваемых в теме:

Квантовая теория – совокупность представлений, согласно которым электромагнитные волны излучаются, распространяются, поглощаются отдельными порциями, которые называются «квантами». Теория послужила основой для появления квантовой механики, объясняющей движение микрообъектов. Гипотеза была предложена М. Планком, развита А. Эйнштейном.

Интерференция – сложение двух волн, вследствие которого наблюдается устойчивая во времени картина усиления или ослабления результирующих световых колебаний в различных точках пространства. Результат зависит от угла падения света на пленку, ее толщины и длины волны. Примером может служить окрашивание поверхности мыльного пузыря.

Фотоэффект – явление вырывания электронов из вещества под действием падающего на него света. Открыто в 1886 году Г. Герцем, подробно изучено А.С. Столетовым. Квантовая теория света дала возможность объяснить это явление. А. Эйнштейн был удостоен Нобелевской премии за работы по теории фотоэффекта.

Планетарная модель атома – предложена в 1906 году Э. Резерфордом. Согласно предложенной модели ядро атома имеет положительный заряд и располагается в центре, вокруг него по своим орбитам вращаются отрицательно заряженные частицы – электроны. Оказалась несостоятельной.

Энергетические уровни – определенная энергия, которой характеризуется данный электрон в атоме, соответствующая его расстоянию от ядра. Термин предложен Н.Бором.

Основная и дополнительная литература по теме урока:

Естествознание. 10 класс [Текст]: учебник для общеобразоват. организаций: базовый уровень / И.Ю. Алексашина, К.В. Галактионов, И.С. Дмитриев, А.В. Ляпцев и др. / под ред. И.Ю. Алексашиной. – 3-е изд., испр. – М.: Просвещение, 2017 : с 64-71.

Открытые электронные ресурсы по теме урока:

Кеттерле В. Когда атомы ведут себя как волны. Бозе-эйнштейновская конденсация и атомный лазер. Нобелевская лекция. 2001 г. Электронный доступ : https://ufn.ru/ru/articles/2003/12/e/

Как объяснить корпускулярно-волновой дуализм. д.ф-м.н., профессор, профессор ВолГУ А. Морозов / Электронный ресурс: https://www.youtube.com/watch?v=FWWlclQ0ozs

Корпускулярно-волновой дуализм — Эмиль Ахмедов Открытый образовательный ресурс: ассоциация специалистов в сфере образования, науки и просвещения «Издательский дом “ПостНаука”» адрес доступа: https://postnauka.ru/video/81299

Теоретический материал для самостоятельного изучения

В классической физике частицы и волны резко противопоставлялись как олицетворение дискретности (прерывности) и непрерывности соответственно. В качестве существенных различий считалось, что частицы относительно строго локализованы в пространстве и движутся по определенным траекториям. Волны же наоборот не имеют строгой локализации и обладают следующими признаками: могут огибать препятствия, могут накладываться друг на друга, существовать в одной и той же точке пространства. При движении частиц происходит перенос вещества и энергии, а при распространении волн переноса вещества не происходит. Свойственное классической физике противопоставление вещества как дискретного образования и поля, как непрерывного, соответствует принципу «или – или». Однако исследование природы света сняла это противоречие.

Волновые свойства света

Ньютон в своем трактате «Оптика, или Трактат об отражениях, преломлениях, изгибаниях и цветах света», только выдвинул предположение, что свет обладает свойствами волны, однако не стал развивать эту идею. Ученый объяснял законы оптики с позиций корпускулярной теории. Считая свет потоком частиц

Однако, в 1801 году, Томас Юнг обнаружил явление интерференции у света, что характерно для всех волн. Суть явления заключается во взаимном усилении или ослаблении когерентных волн при наложении. Напомним, что «Когерентные» можно перевести как «синхронные», «согласованные»; у когерентных волн одинаковая частота (одинаковая длина волны). Если амплитуды волн света совпадут при наложении, то мы будем наблюдать усиление яркости светового пятна. Если волны будут противоположны по значению максимумов и минимумов (гребней и впадин), то мы можем добиться такого состояния, когда световое пятно не будет видимо. Волновая характеристика света помогла Т.Юнгу объяснить явление дисперсии (разложения) света призмой.

Если свет – это волна, то наряду с интерференцией должна наблюдаться и дифракция света. Ведь дифракция – огибание волнами краев препятствий – присуща волновому движению. В результате этого в области геометрической тени могут возникать светлые зоны. Наоборот, в области, куда в соответствии с законом прямолинейного распространения светового луча должен падать свет, может возникать темная зона.

Лишь после проведения качественных опытов, демонстрирующих интерференцию и дифракцию, волновая природа света стала признанной.

Корпускулярные свойства света

При этом количество выбитых электронов связано с частотой световых волн, но не с их интенсивностью. Другими словами, электроны будут вылетать с поверхности независимо от яркости света, но при условии, что электрон получит достаточную порцию энергии (напомним, что энергия пропорциональна частоте E=hν). Поскольку энергия кванта может быть поглощена только полностью, то не удивительно, что если энергия кванта света мала (большая длина волны), то и электрон не сможет покинуть вещество, т.е. не совершится работа выхода (Вспомните, что понимается под «работой» в физике). Квант света Эйнштейном был назван фотоном. Стоит отметить, что фотон это не абстрактная модель, это реально существующая частица, хотя и не имеющая массы покоя. Другими словами, фотон существует только в движении.

Корпускулярно-волновой дуализм света

Тем самым, электромагнитное поле проявляет одновременно и волновые, и квантовые (корпускулярные) свойства, как свойства непрерывности, так и свойства прерывности (дискретности). В одних явлениях (интерференция, дифракция) проявляются резче волновые свойства, в других (фотоэффект, фотохимические реакции) – квантовые свойства излучения. Однако ряд свойств можно объяснить в согласованности, как с волновых, так и квантовых позиций. Так, например, давление света можно объяснить в согласии с опытом как передачей фотонами (квантами света) импульса поверхности, на которую они падают, так и на основе представлений об электромагнитной волне, где электрическая составляющая возбуждает движение зарядов в проводящей поверхности, а магнитная обеспечивает действие сила Лоренца. Такого рода двоякое объяснение одного и того же явления говорит о том, что свет одновременно проявляет и те, и другие свойства, а потому одновременно обладает ими, обнаруживая единство. Это единство проявляется в основных характеристиках фотона. Он обладает, как любая частица, энергией (hν), массой(с квантовых позиций можно объяснить явление. e7ce5ad5 057c 444c a43a 4c0078a41e0d. с квантовых позиций можно объяснить явление фото. с квантовых позиций можно объяснить явление-e7ce5ad5 057c 444c a43a 4c0078a41e0d. картинка с квантовых позиций можно объяснить явление. картинка e7ce5ad5 057c 444c a43a 4c0078a41e0d. 1) Если свет падает из оптически прозрачного вещества с показателем преломления 2,0 в вакуум под углом падения 90°, то синус угла преломления будет равен:), и импульсом (с квантовых позиций можно объяснить явление. ae13a1ee d342 44a6 9a5e b4bbc6d9a0c0. с квантовых позиций можно объяснить явление фото. с квантовых позиций можно объяснить явление-ae13a1ee d342 44a6 9a5e b4bbc6d9a0c0. картинка с квантовых позиций можно объяснить явление. картинка ae13a1ee d342 44a6 9a5e b4bbc6d9a0c0. 1) Если свет падает из оптически прозрачного вещества с показателем преломления 2,0 в вакуум под углом падения 90°, то синус угла преломления будет равен:), но эти корпускулярные характеристики выражаются через сугубо волновую характеристику – частоту.

Одновременно обладая и теми и другими свойствами, свет не всегда одновременно их проявляет. В зависимости от условий резче проявляются одни или другие свойства. Такая двойственность света называется корпускулярно-волновым дуализмом.

Волновые свойства вещества

Итак, электромагнитное излучение обладает одновременно свойствами волн и свойствами частиц.

Но оказалось, что эта двойственность характерна не только для поля, что ей обладают и любые микрообъекты. Например, частица вещества – электрон.

Так, согласно современным представлениям, наряду с волнами электромагнитного поля имеются волны вещества. (Вспомним про тепловые излучения!). Эта идея, предложенная в 1924 году Луи де Бройлем, также была подтверждена опытным путем. Суть опыта состояла в том, что поток электронов определенной энергии направлялся на тонкую пластинку и после этого попадал на фотопластинку, на которой обнаруживалась типичная дифракционная картина. Электроны дифрагировали как волны.

С этих позиций изменились и современные представления о строении атома. На смену планетарной модели Эрнста Резерфорда, согласно которой электроны как планеты вращаются по своим траекториям пришла новая модель. Описанная по подобию движения планет Солнечной системы старая модель оказалась не состоятельной, поскольку не могла объяснить, почему электрон не падает на ядро, и почему спектры излучения и поглощения атомов линейчатые. Сегодня при описании атома учитывается дуальная природа электрона, существование которого связано с некоторым «стационарным» состоянием, в котором он свою энергию не теряет. Энергию электрон тоже может изменить дискретно при поглощении или испускании квантов. Таким образом существование электрона в атоме связано с энергетическими уровнями, которые, вследствие волновой природы электрона, можно представить, как области пространства вокруг ядра, где с наибольшей вероятностью мы можем его зафиксировать. Современные представления о микромире не могут быть описаны понятиями классической механики, поэтому на смену понятию орбита, приходит менее категоричное – орбиталь.

Из вероятностного характера описания следует крах концепции детерминизма (предполагает однозначность и предопределенность будущего, это вытекает из признания жесткой причинно-следственной связи между событиями и явлениями и отрицает объективность случайности). В соответствии с квантовой теорией будущее состояние любой системы может быть предсказано лишь с некоторой вероятностью. Идея вероятностного характера процессов в микромире постепенно была распространена и на процессы в нашем макромире. Наше будущее, таким образом, не является жестко определенным.

Единство волновых и корпускулярных свойств, дискретности и непрерывности, т.е. корпускулярно-волновой дуализм, есть общая черта материальных объектов, которой обладают и поля, и все микрочастицы. И это еще одно доказательство единства материального мира.

Свет (электромагнитные волны) осуществляет распространение энергии порциями – квантами, проявляя наравне с волновыми и квантовые свойства.

Электрон в определенных условиях ведет себя как волна.

Волна, соответствующая определенной частице, определяет вероятность нахождения частицы в данной точке пространства.

Всем микрочастицам присущи как корпускулярные, так и волновые свойства. В то же время любую из микрочастиц нельзя считать ни частицей, ни волной в классическом понимании. К корпускулярному и волновому описанию следует относиться как к дополняющим друг друга точкам зрения на один и тот же круг явлений.

Примеры и разбор решения заданий тренировочного модуля.

Задание1. Выберите один ответ

Интерференцией света объясняется физическое явление:

А: красный цвет абажура настольной лампы, светящейся белым светом

Б: красный цвет мыльной пленки, освещаемой белым светом

В: проявление цветного спектра настольной лампы, светящейся белым светом

Правильный ответ: Б

Пояснение: явления под А и В связаны с дисперсией

Задание2. Вставьте пропущенные элементы в тексте по смыслу:

«Единство ___________и корпускулярных свойств, дискретности и_____________, т.е. корпускулярно-волновой дуализм, есть ________черта материальных объектов, которой обладают и поля, и все________. И это еще одно доказательство единства материального мира»

Варианты элементов для подстановки: непрерывности; общая; тела; микрочастицы; волновых; частная

Ответ: «Единство волновых и корпускулярных свойств, дискретности и непрерывности, т.е. корпускулярно-волновой дуализм, есть общая черта материальных объектов, которой обладают и поля, и все микрочастицы. И это ещё одно доказательство единства материального мира»

Источник

Загадка наблюдателя: 5 знаменитых квантовых экспериментов

Михаил Петров

Никто в мире не понимает квантовую механику — это главное, что нужно о ней знать. Да, многие физики научились пользоваться ее законами и даже предсказывать явления по квантовым расчетам. Но до сих пор непонятно, почему присутствие наблюдателя определяет судьбу системы и заставляет ее сделать выбор в пользу одного состояния. «Теории и практики» подобрали примеры экспериментов, на исход которых неминуемо влияет наблюдатель, и попытались разобраться, что квантовая механика собирается делать с таким вмешательством сознания в материальную реальность.

Кот Шредингера

с квантовых позиций можно объяснить явление. base 58c2bb1bca. с квантовых позиций можно объяснить явление фото. с квантовых позиций можно объяснить явление-base 58c2bb1bca. картинка с квантовых позиций можно объяснить явление. картинка base 58c2bb1bca. 1) Если свет падает из оптически прозрачного вещества с показателем преломления 2,0 в вакуум под углом падения 90°, то синус угла преломления будет равен:

Сегодня существует множество интерпретаций квантовой механики, самой популярной среди которых остается копенгагенская. Ее главные положения в 1920-х годах сформулировали Нильс Бор и Вернер Гейзенберг. А центральным термином копенгагенской интерпретации стала волновая функция — математическая функция, заключающая в себе информацию обо всех возможных состояниях квантовой системы, в которых она одновременно пребывает.

По копенгагенской интерпретации, доподлинно определить состояние системы, выделить его среди остальных может только наблюдение (волновая функция только помогает математически рассчитать вероятность обнаружить систему в том или ином состоянии). Можно сказать, что после наблюдения квантовая система становится классической: мгновенно перестает сосуществовать сразу во многих состояниях в пользу одного из них.

У такого подхода всегда были противники (вспомнить хотя бы «Бог не играет в кости» Альберта Эйнштейна), но точность расчетов и предсказаний брала свое. Впрочем, в последнее время сторонников копенгагенской интерпретации становится все меньше и не последняя причина тому — тот самый загадочный мгновенный коллапс волновой функции при измерении. Знаменитый мысленный эксперимент Эрвина Шредингера с как раз был призван показать абсурдность этого явления.

Получается, что для внешнего наблюдателя кот внутри ящика существует сразу в двух состояниях: он либо жив, если все идет нормально, либо мертв, если распад произошел и ампула разбилась. Оба этих состояния описывает волновая функция кота, которая меняется с течением времени: чем дальше, тем больше вероятность, что радиоактивный распад уже случился. Но как только ящик открывается, волновая функция коллапсирует и мы сразу видим исход живодерского эксперимента.

Выходит, пока наблюдатель не откроет ящик, кот так и будет вечно балансировать на границе между жизнью и смертью, а определит его участь только действие наблюдателя. Вот абсурд, на который указывал Шредингер.

Дифракция электронов

с квантовых позиций можно объяснить явление. base 8f0c36fa43. с квантовых позиций можно объяснить явление фото. с квантовых позиций можно объяснить явление-base 8f0c36fa43. картинка с квантовых позиций можно объяснить явление. картинка base 8f0c36fa43. 1) Если свет падает из оптически прозрачного вещества с показателем преломления 2,0 в вакуум под углом падения 90°, то синус угла преломления будет равен:

По опросу крупнейших физиков, проведенному газетой The New York Times, опыт с дифракцией электронов, поставленный в 1961 году Клаусом Йенсоном, стал одним из красивейших в истории науки. В чем его суть?

Есть источник, излучающий поток электронов в сторону экрана-фотопластинки. И есть преграда на пути этих электронов — медная пластинка с двумя щелями. Какой картины на экране можно ожидать, если представлять электроны просто маленькими заряженными шариками? Двух засвеченных полос напротив щелей.

В действительности на экране появляется гораздо более сложный узор из чередующихся черных и белых полос. Дело в том, что при прохождении через щели электроны начинают вести себя не как частицы, а как волны (подобно тому, как и фотоны, частицы света, одновременно могут быть и волнами). Потом эти волны взаимодействуют в пространстве, где-то ослабляя, а усиливая друг друга, и в результате на экране появляется сложная картина из чередующихся светлых и темных полос.

При этом результат эксперимента не меняется, и если пускать электроны через щель не сплошным потоком, а поодиночке, даже одна частица может быть одновременно и волной. Даже один электрон может одновременно пройти через две щели (и это еще одно из важных положений копенгагенской интерпретации квантовой механики — объекты могут одновременно проявлять и свои «привычные» материальные свойства, и экзотические волновые).

Но при чем здесь наблюдатель? При том, что с ним и без того запутанная история стала еще сложнее. Когда в подобных экспериментах физики попытались зафиксировать с помощью приборов, через какую щель в действительности проходит электрон, картинка на экране резко поменялась и стала «классической»: два засвеченных участка напротив щелей и никаких чередующихся полос.

Электроны будто не захотели проявлять свою волновую природу под пристальным взором наблюдателя. Подстроились под его инстинктивное желание увидеть простую и понятную картинку. Мистика? Есть и куда более простое объяснение: никакое наблюдение за системой нельзя провести без физического воздействия на нее. Но к этому вернемся еще чуть позже.

Нагретый фуллерен

с квантовых позиций можно объяснить явление. base ea3f881e71. с квантовых позиций можно объяснить явление фото. с квантовых позиций можно объяснить явление-base ea3f881e71. картинка с квантовых позиций можно объяснить явление. картинка base ea3f881e71. 1) Если свет падает из оптически прозрачного вещества с показателем преломления 2,0 в вакуум под углом падения 90°, то синус угла преломления будет равен:

Опыты по дифракции частиц ставили не только на электронах, но и на куда больших объектах. Например, фуллеренах — крупных, замкнутых молекулах, составленных из десятков атомов углерода (так, фуллерен из шестидесяти атомов углерода по форме очень похож на футбольный мяч: полую сферу, сшитую из пяти- и шестиугольников).

Недавно группа из Венского университета во главе с профессором Цайлингером попыталась внести элемент наблюдения в подобные опыты. Для этого они облучали движущиеся молекулы фуллерена лазерным лучом. После, нагретые внешним воздействием, молекулы начинали светиться и тем неминуемо обнаруживали для наблюдателя свое место в пространстве.

Вместе с таким нововведением поменялось и поведение молекул. До начала тотальной слежки фуллерены вполне успешно огибали препятствия (проявляли волновые свойства) подобно электронам из прошлого примера, проходящим сквозь непрозрачный экран. Но позже, с появлением наблюдателя, фуллерены успокоились и стали вести себя как вполне законопослушные частицы материи.

Охлаждающее измерение

с квантовых позиций можно объяснить явление. base 65d41adac2. с квантовых позиций можно объяснить явление фото. с квантовых позиций можно объяснить явление-base 65d41adac2. картинка с квантовых позиций можно объяснить явление. картинка base 65d41adac2. 1) Если свет падает из оптически прозрачного вещества с показателем преломления 2,0 в вакуум под углом падения 90°, то синус угла преломления будет равен:

Одним из самых известных законов квантового мира является принцип неопределенности Гейзенберга: невозможно одновременно установить положение и скорость квантового объекта. Чем точнее измеряем импульс частицы, тем менее точно можно измерить ее положение. Но действие квантовых законов, работающих на уровне крошечных частиц, обычно незаметно в нашем мире больших макрообъектов.

Потому тем ценнее недавние эксперименты группы профессора Шваба из США, в которых квантовые эффекты продемонстрировали не на уровне тех же электронов или молекул фуллерена (их характерный диаметр — около 1 нм), а на чуть более ощутимом объекте — крошечной алюминиевой полоске.

Эту полоску закрепили с обеих сторон так, чтобы ее середина была в подвешенном состоянии и могла вибрировать под внешним воздействием. Кроме того, рядом с полоской находился прибор, способный с высокой точностью регистрировать ее положение.

В результате экспериментаторы обнаружили два интересных эффекта. Во-первых, любое измерение положения объекта, наблюдение за полоской не проходило для нее бесследно — после каждого измерения положение полоски менялось. Грубо говоря, экспериментаторы с большой точностью определяли координаты полоски и тем самым, по принципу Гейзенберга, меняли ее скорость, а значит и последующее положение.

Во-вторых, что уже совсем неожиданно, некоторые измерения еще и приводили к охлаждению полоски. Получается, наблюдатель может лишь одним своим присутствием менять физические характеристики объектов. Звучит совсем невероятно, но к чести физиков скажем, что они не растерялись — теперь группа профессора Шваба думает, как применить обнаруженный эффект для охлаждения электронных микросхем.

Замирающие частицы

с квантовых позиций можно объяснить явление. base bc01e62519. с квантовых позиций можно объяснить явление фото. с квантовых позиций можно объяснить явление-base bc01e62519. картинка с квантовых позиций можно объяснить явление. картинка base bc01e62519. 1) Если свет падает из оптически прозрачного вещества с показателем преломления 2,0 в вакуум под углом падения 90°, то синус угла преломления будет равен:

Как известно, нестабильные радиоактивные частицы распадаются в мире не только ради экспериментов над котами, но и вполне сами по себе. При этом каждая частица характеризуется средним временем жизни, которое, оказывается, может увеличиваться под пристальным взором наблюдателя.

Впервые этот квантовый эффект предсказали еще в 1960-х годах, а его блестящее экспериментальное подтверждение появилось в статье, опубликованной в 2006 году группой нобелевского лауреата по физике Вольфганга Кеттерле из Массачусетского технологического института.

В этой работе изучали распад нестабильных возбужденных атомов рубидия (распадаются на атомы рубидия в основном состоянии и фотоны). Сразу после приготовления системы, возбуждения атомов за ними начинали наблюдать — просвечивать их лазерным пучком. При этом наблюдение велось в двух режимах: непрерывном (в систему постоянно подаются небольшие световые импульсы) и импульсном (система время от времени облучается импульсами более мощными).

Полученные результаты отлично совпали с теоретическими предсказаниями. Внешние световые воздействия действительно замедляют распад частиц, как бы возвращают их в исходное, далекое от распада состояние. При этом величина эффекта для двух исследованных режимов также совпадает с предсказаниями. А максимально жизнь нестабильных возбужденных атомов рубидия удалось продлить в 30 раз.

Квантовая механика и сознание

Электроны и фуллерены перестают проявлять свои волновые свойства, алюминиевые пластинки охлаждаются, а нестабильные частицы замирают в своем распаде: под всесильным взором наблюдателя мир меняется. Чем не свидетельство вовлеченности нашего разума в работу мира вокруг? Так может быть правы были Карл Юнг и Вольфганг Паули (австрийcкий физик, лауреат Нобелевской премии, один из пионеров квантовой механики), когда говорили, что законы физики и сознания должны рассматриваться как взаимодополняющие?

Но так остается только один шаг до дежурного признания: весь мир вокруг суть иллюзорное порождение нашего разума. Жутковато? («Вы и вправду думаете, что Луна существует лишь когда вы на нее смотрите?» — комментировал Эйнштейн принципы квантовой механики). Тогда попробуем вновь обратиться к физикам. Тем более, в последние годы они все меньше жалуют копенгагенскую интерпретацию квантовой механики с ее загадочным коллапсом волной функции, на смену которому приходит другой, вполне приземленный и надежный термин — декогеренция.

Дело вот в чем — во всех описанных опытах с наблюдением экспериментаторы неминуемо воздействовали на систему. Подсвечивали ее лазером, устанавливали измеряющие приборы. И это общий, очень важный принцип: нельзя пронаблюдать за системой, измерить ее свойства не провзаимодействовав с ней. А где взаимодействие, там и изменение свойств. Тем более, когда с крошечной квантовой системой взаимодействуют махины квантовых объектов. Так что вечный, буддистский нейтралитет наблюдателя невозможен.

Как раз это объясняет термин «декогеренция» — необратимый с точки зрения термодинамики процесс нарушения квантовых свойств системы при ее взаимодействии с другой, крупной системой. Во время такого взаимодействия квантовая система утрачивает свои изначальные черты и становится классической, «подчиняется» системе крупной. Этим и объясняется парадокс с котом Шредингера: кот представляет собой настолько большую систему, что его просто нельзя изолировать от мира. Сама постановка мысленного эксперимента не совсем корректна.

В любом случае, по сравнению с реальностью как актом творения сознания, декогеренция звучит куда более спокойно. Даже, может быть, слишком спокойно. Ведь с таким подходом весь классический мир становится одним большим эффектом декогеренции. А как утверждают авторы одной из самых серьезных книг в этой области, из таких подходов еще и логично вытекают утверждения вроде «в мире не существует никаких частиц» или «не существует никакого времени на фундаментальном уровне».

Созидающий наблюдатель или всесильная декогеренция? Приходится выбирать из двух зол. Но помните — сейчас ученые все больше убеждаются, что в основе наших мыслительных процессов лежат те самые пресловутые квантовые эффекты. Так что где заканчивается наблюдение и начинается реальность — выбирать приходится каждому из нас.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *