ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ

РавноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. image001 3. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-image001 3. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° image001 3. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. image002 2. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-image002 2. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° image002 2. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).. Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ равноускорСнного двиТСния сводится ΠΊ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ прямолинСйного равноускорСнного двиТСния. Π’ случаС прямолинСйного двиТСния Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ скорости ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. image003 2. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-image003 2. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° image003 2. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).ΠΈ ускорСния ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. image001 3. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-image001 3. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° image001 3. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ вдоль прямой двиТСния. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ο… ΠΈ ускорСниС a Π² проСкциях Π½Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ двиТСния ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ алгСбраичСскиС Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹.

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. image004 1. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-image004 1. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° image004 1. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² скорости ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. image003 2. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-image003 2. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° image003 2. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).ΠΈ ускорСния ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. image001 3. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-image001 3. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° image001 3. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ оси. ax = 0, ay = –g

ΠŸΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° опрСдСляСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. image005 3. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-image005 3. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° image005 3. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1). (*)

Π’ этой Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Ο…0 – ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° ΠΏΡ€ΠΈ t = 0 (Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ), a = const – ускорСниС. На Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ скорости Ο… (t) эта Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ прямой Π»ΠΈΠ½ΠΈΠΈ (рис. 1.4.2).

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. image006. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-image006. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° image006. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

Π“Ρ€Π°Ρ„ΠΈΠΊΠΈ скорости равноускорСнного двиТСния

По Π½Π°ΠΊΠ»ΠΎΠ½Ρƒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° скорости ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ ускорСниС a Ρ‚Π΅Π»Π°. Π‘ΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ построСния Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ Π½Π° рис. 1.4.2 для Π³Ρ€Π°Ρ„ΠΈΠΊΠ° I. УскорСниС числСнно Ρ€Π°Π²Π½ΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ сторон Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ABC:

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. image007 2. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-image007 2. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° image007 2. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

Π§Π΅ΠΌ большС ΡƒΠ³ΠΎΠ» Ξ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ Π³Ρ€Π°Ρ„ΠΈΠΊ скорости с осью Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Ρ‚. Π΅. Ρ‡Π΅ΠΌ большС Π½Π°ΠΊΠ»ΠΎΠ½ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° (ΠΊΡ€ΡƒΡ‚ΠΈΠ·Π½Π°), Ρ‚Π΅ΠΌ большС ускорСниС Ρ‚Π΅Π»Π°.

Для Π³Ρ€Π°Ρ„ΠΈΠΊΠ° II: Ο…0 = 3 ΠΌ/с, a = –1/3 ΠΌ/с 2

Π“Ρ€Π°Ρ„ΠΈΠΊ скорости позволяСт Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡŽ пСрСмСщСния s Ρ‚Π΅Π»Π° Π·Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ врСмя t. Π’Ρ‹Π΄Π΅Π»ΠΈΠΌ Π½Π° оси Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΌΠ°Π»Ρ‹ΠΉ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ξ”t. Если этот ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ достаточно ΠΌΠ°Π», Ρ‚ΠΎ ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ скорости Π·Π° этот ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π½Π΅Π²Π΅Π»ΠΈΠΊΠΎ, Ρ‚. Π΅. Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ этого ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ° Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΌ с Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ срСднСй ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ, которая Ρ€Π°Π²Π½Π° ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ скорости Ο… Ρ‚Π΅Π»Π° Π² сСрСдинС ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ° Ξ”t. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ξ”s Π·Π° врСмя Ξ”t Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½ΠΎ Ξ”s = Ο…Ξ”t. Π­Ρ‚ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Π·Π°ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²Π°Π½Π½ΠΎΠΉ полоски (рис. 1.4.2). Π Π°Π·Π±ΠΈΠ² ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΡ‚ 0 Π΄ΠΎ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° t Π½Π° ΠΌΠ°Π»Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Ξ”t, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ s Π·Π° Π·Π°Π΄Π°Π½Π½ΠΎΠ΅ врСмя t ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ€Π°Π²Π½ΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ODEF. Π‘ΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ построСния Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ для Π³Ρ€Π°Ρ„ΠΈΠΊΠ° II Π½Π° рис. 1.4.2. ВрСмя t принято Ρ€Π°Π²Π½Ρ‹ΠΌ 5,5 с.

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. image008 1. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-image008 1. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° image008 1. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

Π’Π°ΠΊ ΠΊΠ°ΠΊ Ο… – Ο…0 = at, ΠΎΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° для пСрСмСщСния s Ρ‚Π΅Π»Π° ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ ускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π½Π° ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΡ‚ 0 Π΄ΠΎ t Π·Π°ΠΏΠΈΡˆΠ΅Ρ‚ΡΡ Π² Π²ΠΈΠ΄Π΅:

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. image009 2. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-image009 2. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° image009 2. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1). (**)

Для нахоТдСния ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ y Ρ‚Π΅Π»Π° Π² любой ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t Π½ΡƒΠΆΠ½ΠΎ ΠΊ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π΅ y0 ΠΏΡ€ΠΈΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π·Π° врСмя t:

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. image010 2. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-image010 2. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° image010 2. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1). (***)

Π­Ρ‚ΠΎ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π·Π°ΠΊΠΎΠ½ΠΎΠΌ равноускорСнного двиТСния.

ΠŸΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ равноускорСнного двиТСния ΠΈΠ½ΠΎΠ³Π΄Π° Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ Π·Π°Π΄Π°Ρ‡Π° опрСдСлСния пСрСмСщСния Ρ‚Π΅Π»Π° ΠΏΠΎ Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌ значСниям Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ Ο…0 ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ Ο… скоростСй ΠΈ ускорСния a. Π­Ρ‚Π° Π·Π°Π΄Π°Ρ‡Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½Π° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ, написанных Π²Ρ‹ΡˆΠ΅, ΠΏΡƒΡ‚Π΅ΠΌ ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ ΠΈΠ· Π½ΠΈΡ… Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ записываСтся Π² Π²ΠΈΠ΄Π΅

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. image011 2. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-image011 2. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° image011 2. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

Из этой Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ для опрСдСлСния ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ скорости Ο… Ρ‚Π΅Π»Π°, Ссли извСстны Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ο…0, ускорСниС a ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ s:

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. image012 2. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-image012 2. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° image012 2. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

Если Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ο…0 Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ, эти Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‚ Π²ΠΈΠ΄

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. image013 2. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-image013 2. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° image013 2. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ Π΅Ρ‰Π΅ Ρ€Π°Π· ΠΎΠ±Ρ€Π°Ρ‚ΠΈΡ‚ΡŒ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ входящиС Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ равноускорСнного прямолинСйного двиТСния Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Ο…0, Ο…, s, a, y0 ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ алгСбраичСскими. Π’ зависимости ΠΎΡ‚ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π° двиТСния каТдая ΠΈΠ· этих Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅, Ρ‚Π°ΠΊ ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ значСния.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ

тСория ΠΏΠΎ Ρ„ΠΈΠ·ΠΈΠΊΠ΅ 🧲 ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°

ΠžΠΏΠΈΡΡ‹Π²Π°Ρ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ с постоянной ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ, ΠΌΡ‹ ΠΌΠΎΠ³Π»ΠΈ с ΡƒΠ²Π΅Ρ€Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ ΡΠΊΠ°Π·Π°Ρ‚ΡŒ, ΠΊΠ°ΠΊΡƒΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚Π΅Π»ΠΎ Π² любой ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π’ случаС с равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ это Π½Π΅ Ρ‚Π°ΠΊ, ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ постоянно мСняСтся. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ для Π΅Π³ΠΎ описания вводится понятиС ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ скорости.

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t Ρ€Π°Π²Π½Π° суммС Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ скорости Ρ‚Π΅Π»Π° Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t0 ΠΈ произвСдСния ускорСния этого Ρ‚Π΅Π»Π° Π½Π° врСмя t, Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ это Ρ‚Π΅Π»ΠΎ двигалось. Π’ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΌ Π²ΠΈΠ΄Π΅ это записываСтся Ρ‚Π°ΠΊ:

v β€” ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, v 0 β€”ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, a β€” ускорСниС Ρ‚Π΅Π»Π°, t β€” врСмя, Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ это Ρ‚Π΅Π»ΠΎ двигалось

НаправлСниС Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΌ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π½Π΅ всСгда совпадаСт с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ускорСния ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ пСрСмСщСния Ρ‚Π΅Π»Π°.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–1. ΠœΠ°Π»ΡŒΡ‡ΠΈΠΊ ΠΏΡ€ΠΎΠ±Π΅ΠΆΠ°Π» 200 ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΏΠΎ прямой Π»ΠΈΠ½ΠΈΠΈ, Π° Π·Π°Ρ‚Π΅ΠΌ вСрнулся Π² исходноС ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости ΠΈ пСрСмСщСния Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚, ΠΊΠΎΠ³Π΄Π° ΠΌΠ°Π»ΡŒΡ‡ΠΈΠΊ, Π²ΠΎΠ·Π²Ρ€Π°Ρ‰Π°ΡΡΡŒ Π² исходноС ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, находился Π½Π° ΠΏΠΎΠ»ΠΏΡƒΡ‚ΠΈ Π΄ΠΎ Π½Π΅Π³ΠΎ.

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. word image 142. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-word image 142. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° word image 142. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

Началу Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния соотвСтствуСт исходноС ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠ°Π»ΡŒΡ‡ΠΈΠΊΠ°. Когда ΠΌΠ°Π»ΡŒΡ‡ΠΈΠΊ возвращался ΠΈ находился Π½Π° ΠΏΠΎΠ»ΠΏΡƒΡ‚ΠΈ Π΄ΠΎ исходного полоТСния, ΠΊΠΎΠ½Ρ†Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π΅Π³ΠΎ пСрСмСщСния соотвСтствовала Ρ‚ΠΎΡ‡ΠΊΠ°, лСТащая посСрСдинС 200-ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€ пСрСмСщСния Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Π² сторону ОΠ₯. Но ΠΌΠ°Π»ΡŒΡ‡ΠΈΠΊ Π² это врСмя направлялся Π² ΠΎΠ±Ρ€Π°Ρ‚Π½ΡƒΡŽ сторону. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π΅Π³ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ² направлСния оси ОΠ₯.

Бкалярная Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° скорости

Π’ случаС равноускорСнного прямолинСйного двиТСния ΠΌΠΎΠΆΠ½ΠΎ вмСсто Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ скаляры. Π’ΠΎΠ³Π΄Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²ΠΈΠ΄:

Π—Π½Π°ΠΊ Β«+Β» ставится Π² случаС, ΠΊΠΎΠ³Π΄Π° Ρ‚Π΅Π»ΠΎ разгоняСтся, Π·Π½Π°ΠΊ «–» β€” ΠΊΠΎΠ³Π΄Π° ΠΎΠ½ΠΎ Ρ‚ΠΎΡ€ΠΌΠΎΠ·ΠΈΡ‚.

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ скорости

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ скорости ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Π—Π½Π°ΠΊ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ скорости зависит ΠΎΡ‚ Ρ‚ΠΎΠ³ΠΎ, Π² ΠΊΠ°ΠΊΡƒΡŽ сторону двиТСтся Ρ‚Π΅Π»ΠΎ:

Π—Π½Π°ΠΊ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ скорости Π½Π΅ зависит ΠΎΡ‚ Ρ‚ΠΎΠ³ΠΎ, ΠΊΠ°ΠΊΠΈΠΌ являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅: Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½Ρ‹ΠΌ ΠΈΠ»ΠΈ равноускорСнным.

Π“Ρ€Π°Ρ„ΠΈΠΊ скорости

Π“Ρ€Π°Ρ„ΠΈΠΊ скорости β€” Π³Ρ€Π°Ρ„ΠΈΠΊ зависимости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ скорости ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ являСтся прямая.

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. word image 143. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-word image 143. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° word image 143. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΉ ускорСния ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°ΠΌ скоростСй

Π§Ρ‚ΠΎΠ±Ρ‹ ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ ΠΌΠΎΠ΄ΡƒΠ»ΠΈ ускорСний ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°ΠΌ скоростСй, Π½ΡƒΠΆΠ½ΠΎ ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ ΠΈΡ… ΡƒΠ³Π»Ρ‹ Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊ оси Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π§Π΅ΠΌ большС ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ ΡƒΠ³ΠΎΠ», Ρ‚Π΅ΠΌ большС ΠΌΠΎΠ΄ΡƒΠ»ΡŒ ускорСния. Π’Π°ΠΊ, Π½Π° рисункС Π²Ρ‹ΡˆΠ΅ большим ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΌ ускорСния ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ Ρ‚Π΅Π»ΠΎ 3 β€” ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π΅Π³ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ скорости ΠΈ осью Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ. МСньшим ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΌ ускорСния ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ Ρ‚Π΅Π»ΠΎ 1, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π΅Π³ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ скорости ΠΈ осью Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–2. НиТС прСдставлСн Π³Ρ€Π°Ρ„ΠΈΠΊ двиТСния вСлосипСдиста. ОпишСм Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ Π΅Π³ΠΎ двиТСния Π½Π° участкС ΠΎΡ‚ 0 Π΄ΠΎ 2 с, Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t=2 с ΠΈ Π½Π° участкС ΠΎΡ‚ 2 с.

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. word image 144. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-word image 144. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° word image 144. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

На ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ ΠΏΡƒΡ‚ΠΈ ΠΎΡ‚ 0 Π΄ΠΎ 2 с вСлосипСдист двигался Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΌ оси ОΠ₯. ΠŸΡ€ΠΈ этом ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π΅Π³ΠΎ скорости ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π»ΡΡ. Π’ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t=2 c вСлосипСдист приостановился ΠΈ помСнял Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ двиТСния, ΠΈ дальшС ΠΎΠ½ΠΎ стало ΡΠΎΠ²ΠΏΠ°Π΄Π°Ρ‚ΡŒ с осью ОΠ₯. ΠœΠΎΠ΄ΡƒΠ»ΡŒ Π΅Π³ΠΎ скорости ΠΏΡ€ΠΈ этом Π½Π°Ρ‡Π°Π» расти. Но Π½Π° всСм ΠΏΡƒΡ‚ΠΈ нСзависимо ΠΎΡ‚ направлСния двиТСния вСлосипСдиста Π²Π΅ΠΊΡ‚ΠΎΡ€ Π΅Π³ΠΎ ускорСния всСгда Π±Ρ‹Π» Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Π² сторону ОΠ₯. Однако Π΄ΠΎ 2 с Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΡ‡ΠΈΡ‚Π°Π»ΠΎΡΡŒ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½Ρ‹ΠΌ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ускорСниС ΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π±Ρ‹Π»ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π² ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹Π΅ стороны. ПослС 2 с Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ стало равноускорСнным, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ направлСния скорости ΠΈ ускорСния совпали.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–3. Π“Ρ€ΡƒΠ·ΠΎΠ²ΠΈΠΊ Π΅Ρ…Π°Π» с Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ постоянной ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ. Π—Π°Ρ‚Π΅ΠΌ ΠΎΠ½ Π·Π°Ρ‚ΠΎΡ€ΠΌΠΎΠ·ΠΈΠ» ΠΈ остановился Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 5 сСкунд. Найти ΠΏΠΎΡΡ‚ΠΎΡΠ½Π½ΡƒΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ, с ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ двигался Π³Ρ€ΡƒΠ·ΠΎΠ²ΠΈΠΊ, Ссли ΠΏΡ€ΠΈ Ρ‚ΠΎΡ€ΠΌΠΎΠΆΠ΅Π½ΠΈΠΈ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π΅Π³ΠΎ ускорСния составил 2 ΠΌ/с.

Π’Π°ΠΊ ΠΊΠ°ΠΊ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅, Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Π±ΡƒΠ΄Π΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΒ» Π·Π½Π°ΠΊ «–». Он Π±ΡƒΠ΄Π΅Ρ‚ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Ρ‚ΡŒ Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π³Ρ€ΡƒΠ·ΠΎΠ²ΠΈΠΊΠ° с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π»Π°ΡΡŒ:

Π’Ρ‹Ρ€Π°Π·ΠΈΠΌ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΡƒΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ:

Π’Π°ΠΊ ΠΊΠ°ΠΊ Π³Ρ€ΡƒΠ·ΠΎΠ²ΠΈΠΊ Π² ΠΈΡ‚ΠΎΠ³Π΅ остановился, Π΅Π³ΠΎ конСчная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ€Π°Π²Π½Π° 0. ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ извСстныС Π΄Π°Π½Π½Ρ‹Π΅ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. Screenshot 2 1. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-Screenshot 2 1. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° Screenshot 2 1. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).Π’Π΅Π»ΠΎ массой 200 Π³ двиТСтся вдоль оси ΠžΡ…, ΠΏΡ€ΠΈ этом Π΅Π³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° измСняСтся Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π² соотвСтствии с Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ Ρ…(t) = 10 + 5t – «>– 3t 2 (всС Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Ρ‹ Π² БИ).

УстановитС соотвСтствиС ΠΌΠ΅ΠΆΠ΄Ρƒ физичСскими Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌΠΈ, Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΠΌΠΈ ΠΈΡ… зависимости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π² условиях Π΄Π°Π½Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ.

К ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ столбца ΠΏΠΎΠ΄Π±Π΅Ρ€ΠΈΡ‚Π΅ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΡƒΡŽ ΠΏΠΎΠ·ΠΈΡ†ΠΈΡŽ ΠΈΠ· Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ столбца ΠΈ Π·Π°ΠΏΠΈΡˆΠΈΡ‚Π΅ Π² Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ Π²Ρ‹Π±Ρ€Π°Π½Π½Ρ‹Π΅ Ρ†ΠΈΡ„Ρ€Ρ‹ ΠΏΠΎΠ΄ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ Π±ΡƒΠΊΠ²Π°ΠΌΠΈ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ ΠΈ равноускорСнного двиТСния

Π Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π€ΠΎΡ€ΠΌΡƒΠ»Π° скорости двиТСния ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ:
ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. Formula skorosti dvizheniya ravnomernoe dvizhenie. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-Formula skorosti dvizheniya ravnomernoe dvizhenie. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° Formula skorosti dvizheniya ravnomernoe dvizhenie. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).
v=const
a=0
v β€” ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ, ΠΌ/с
s β€” ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅, ΠΌ
t β€” врСмя, с
Π€ΠΎΡ€ΠΌΡƒΠ»Π° пСрСмСщСния ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ:
ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. Formula peremeshheniya fizika. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-Formula peremeshheniya fizika. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° Formula peremeshheniya fizika. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).
ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡŽΡ‚ΡΡ Ρ‡Π΅Ρ€Π΅Π· кинСматичСскоС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:
ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. Formula nahozhdeniya koordinat pri ravnomernom dvizhenii. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-Formula nahozhdeniya koordinat pri ravnomernom dvizhenii. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° Formula nahozhdeniya koordinat pri ravnomernom dvizhenii. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).
ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. Ravnomernoe pryamolinejnoe dvizhenie grafik. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-Ravnomernoe pryamolinejnoe dvizhenie grafik. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° Ravnomernoe pryamolinejnoe dvizhenie grafik. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

Π“Ρ€Π°Ρ„ΠΈΠΊ β€” Π Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния

РавноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π€ΠΎΡ€ΠΌΡƒΠ»Π° скорости ΠΏΡ€ΠΈ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ:
ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. Formula skorosti pri ravnouskorennom dvizhenii. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-Formula skorosti pri ravnouskorennom dvizhenii. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° Formula skorosti pri ravnouskorennom dvizhenii. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).
a=const
v0 β€” Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ, ΠΌ/с
a β€” ускорСниС, ΠΌ/с 2
Π€ΠΎΡ€ΠΌΡƒΠ»Π° для нахоТдСния пСрСмСщСния ΠΏΡ€ΠΈ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ:
ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. Formula peremeshheniya pri ravnouskorennom dvizhenii. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-Formula peremeshheniya pri ravnouskorennom dvizhenii. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° Formula peremeshheniya pri ravnouskorennom dvizhenii. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).
ΠΈΠ»ΠΈ
ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. Formula peremeshheniya ravnouskorennoe dvizhenie. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-Formula peremeshheniya ravnouskorennoe dvizhenie. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° Formula peremeshheniya ravnouskorennoe dvizhenie. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).
Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ равноускорСнного двиТСния Π² ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π½Π° оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚:
ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. Uravnenie ravnouskorennogo dvizheniya v proektsii na osi koordinat. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-Uravnenie ravnouskorennogo dvizheniya v proektsii na osi koordinat. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° Uravnenie ravnouskorennogo dvizheniya v proektsii na osi koordinat. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).
Π€ΠΎΡ€ΠΌΡƒΠ»Π° для опрСдСлСния ускорСния ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ:
ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. Formula uskoreniya pri ravnouskorennom pryamolinejnom dvizhenii 1. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-Formula uskoreniya pri ravnouskorennom pryamolinejnom dvizhenii 1. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° Formula uskoreniya pri ravnouskorennom pryamolinejnom dvizhenii 1. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).
v0 β€” Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ, ΠΌ/с
v β€” мгновСнная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ, ΠΌ/с
Π€ΠΎΡ€ΠΌΡƒΠ»Π° для опрСдСлСния срСднСй скорости двиТСния:
ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. formula srednej skorosti. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-formula srednej skorosti. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° formula srednej skorosti. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).
ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. Ravnouskorennoe dvizhenie grafik. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-Ravnouskorennoe dvizhenie grafik. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° Ravnouskorennoe dvizhenie grafik. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

Π“Ρ€Π°Ρ„ΠΈΠΊ β€” РавноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈ a>0

Π Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π€ΠΎΡ€ΠΌΡƒΠ»Π° скорости ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ:
ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. Formula skorosti pri ravnozamedlennom dvizhenii. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-Formula skorosti pri ravnozamedlennom dvizhenii. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° Formula skorosti pri ravnozamedlennom dvizhenii. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).
Π€ΠΎΡ€ΠΌΡƒΠ»Π° пСрСмСщСния ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ:
ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. Formula peremeshheniya pri ravnozamedlennom dvizhenii. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-Formula peremeshheniya pri ravnozamedlennom dvizhenii. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° Formula peremeshheniya pri ravnozamedlennom dvizhenii. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).
ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. Ravnozamedlennoe dvizhenie grafik. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-Ravnozamedlennoe dvizhenie grafik. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° Ravnozamedlennoe dvizhenie grafik. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

Π“Ρ€Π°Ρ„ΠΈΠΊ β€” Π Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈ a 2
Π€ΠΎΡ€ΠΌΡƒΠ»Π° для вычислСния скорости ΠΏΡ€ΠΈ свободном ΠΏΠ°Π΄Π΅Π½ΠΈΠΈ Ρ‚Π΅Π»Π°:
ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. Formula skorosti pri svobodnom padenii tela. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-Formula skorosti pri svobodnom padenii tela. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° Formula skorosti pri svobodnom padenii tela. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).
Π€ΠΎΡ€ΠΌΡƒΠ»Π° для вычислСния пСрСмСщСния ΠΏΡ€ΠΈ свободном ΠΏΠ°Π΄Π΅Π½ΠΈΠΈ Ρ‚Π΅Π»Π°:
ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. Formula peremeshheniya svobodnoe padenie tel. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-Formula peremeshheniya svobodnoe padenie tel. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° Formula peremeshheniya svobodnoe padenie tel. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).
ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. formula. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-formula. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° formula. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).
Π€ΠΎΡ€ΠΌΡƒΠ»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΏΡ€ΠΈ свободном ΠΏΠ°Π΄Π΅Π½ΠΈΠΈ Ρ‚Π΅Π»Π°:
ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. Formula koordinaty pri svobodnom padenii. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-Formula koordinaty pri svobodnom padenii. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° Formula koordinaty pri svobodnom padenii. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).
Π€ΠΎΡ€ΠΌΡƒΠ»Π° высоты с ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ‚Π΅Π»ΠΎ свободно ΠΏΠ°Π΄Π°Π΅Ρ‚:
ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. formula vysoty svobodnoe padenie tela. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-formula vysoty svobodnoe padenie tela. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° formula vysoty svobodnoe padenie tela. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).
Π€ΠΎΡ€ΠΌΡƒΠ»Π° для опрСдСлСния скорости Ρ‚Π΅Π»Π° Π² ΠΊΠΎΠ½Ρ†Π΅ свободного падСния:
ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. skorost v kontse svobodnogo puti. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-skorost v kontse svobodnogo puti. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° skorost v kontse svobodnogo puti. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).
ВрСмя свободного падСния Ρ‚Π΅Π»Π° Ρ€Π°Π²Π½ΠΎ:
ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. formula vremya svobodnogo padeniya tela. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-formula vremya svobodnogo padeniya tela. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° formula vremya svobodnogo padeniya tela. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

Насколько публикация ΠΏΠΎΠ»Π΅Π·Π½Π°?

НаТмитС Π½Π° Π·Π²Π΅Π·Π΄Ρƒ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ!

БрСдняя ΠΎΡ†Π΅Π½ΠΊΠ° 4.8 / 5. ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ ΠΎΡ†Π΅Π½ΠΎΠΊ: 33

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ. УскорСниС. РавноускорСнноС прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. img 5a5b784397b53 e1515944019278. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-img 5a5b784397b53 e1515944019278. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° img 5a5b784397b53 e1515944019278. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

1. РСальноС мСханичСскоС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β€” это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ с ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‰Π΅ΠΉΡΡ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ. Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ стСчСниСм Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ измСняСтся, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ.

ΠŸΡ€ΠΈ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ Ρ‚ΠΎΠ»Π° ΡƒΠΆΠ΅ нСльзя ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ​ \( x=x_0+v_xt \) ​, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ скорости двиТСния Π½Π΅ являСтся постоянным. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ для характСристики быстроты измСнСния полоТСния Ρ‚Π΅Π»Π° с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€ΠΈ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ вводят Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ, Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡƒΡŽ срСднСй ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ.

Π‘Ρ€Π΅Π΄Π½Π΅ΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ ​ \( \vec_ <ср>\) ​ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ двиТСния Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ„ΠΈΠ·ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ, Ρ€Π°Π²Π½ΡƒΡŽ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΈ \( \vec \) Ρ‚Π΅Π»Π° ΠΊΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ​ \( t \) ​, Π·Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΎΠ½ΠΎ ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ»ΠΎ: ​ \( \vec_<ср>=\frac\) ​.

2. Π’Π°ΠΆΠ½ΠΎ, Ρ‡Ρ‚ΠΎ, зная ΡΡ€Π΅Π΄Π½ΡŽΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ двиТСния Π½Π° ΠΊΠ°ΠΊΠΎΠΌ-Π»ΠΈΠ±ΠΎ участкС Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ, нСльзя ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° Π½Π° этой Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ Π² любой ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. НапримСр, Ссли срСдняя ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ двиТСния автомобиля Π·Π° 2 часа 50 ΠΊΠΌ/Ρ‡, Ρ‚ΠΎ ΠΌΡ‹ Π½Π΅ ΠΌΠΎΠΆΠ΅ΠΌ ΡΠΊΠ°Π·Π°Ρ‚ΡŒ, Π³Π΄Π΅ ΠΎΠ½ находился Ρ‡Π΅Ρ€Π΅Π· 0,5 часа ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° двиТСния, Ρ‡Π΅Ρ€Π΅Π· 1 час, 1,5 часа ΠΈ Ρ‚.ΠΏ., ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΎΠ½ ΠΌΠΎΠ³ ΠΏΠ΅Ρ€Π²Ρ‹Π΅ полчаса Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ 80 ΠΊΠΌ/Ρ‡, Π·Π°Ρ‚Π΅ΠΌ ΠΊΠ°ΠΊΠΎΠ΅-Ρ‚ΠΎ врСмя ΡΡ‚ΠΎΡΡ‚ΡŒ, Π° ΠΊΠ°ΠΊΠΎΠ΅-Ρ‚ΠΎ врСмя Π΅Ρ…Π°Ρ‚ΡŒ Π² ΠΏΡ€ΠΎΠ±ΠΊΠ΅ со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ 20 ΠΊΠΌ/Ρ‡.

3. Π”Π²ΠΈΠ³Π°ΡΡΡŒ ΠΏΠΎ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ, Ρ‚Π΅Π»ΠΎ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ всС Π΅Ρ‘ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π’ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ΠΎΠ½ΠΎ находится Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹Π΅ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠ°ΠΊΡƒΡŽ-Ρ‚ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ.

МгновСнной ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ.

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. img 5a5c8f2c01de4. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-img 5a5c8f2c01de4. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° img 5a5c8f2c01de4. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

ΠŸΡ€ΠΈ дальнСйшСм ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠΈ пСрСмСщСния ΠΈ соотвСтствСнно Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ двиТСния Ρ‚Π΅Π»Π° ΠΎΠ½ΠΈ станут Ρ‚Π°ΠΊΠΈΠΌΠΈ малСнькими, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ±ΠΎΡ€, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ спидомСтр, пСрСстанСт Ρ„ΠΈΠΊΡΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ скорости, ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π·Π° этот ΠΌΠ°Π»Ρ‹ΠΉ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΌ. БрСдняя ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π½Π° этом участкС ΠΈ Π΅ΡΡ‚ΡŒ мгновСнная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² Ρ‚.О.

4. Одним ΠΈΠ· Π²ΠΈΠ΄ΠΎΠ² Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ двиТСния являСтся равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. РавноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π·Π° Π»ΡŽΠ±Ρ‹Π΅ Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ измСняСтся Π½Π° ΠΎΠ΄Π½ΠΎ ΠΈ Ρ‚ΠΎ ΠΆΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅.

Π‘Π»ΠΎΠ²Π° Β«Π»ΡŽΠ±Ρ‹Π΅ Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈΒ» ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ Π±Ρ‹ Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (2 с, 1 с, Π΄ΠΎΠ»ΠΈ сСкунды ΠΈ Ρ‚.ΠΏ.) ΠΌΡ‹ Π½ΠΈ взяли, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ всСгда Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠ·ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ. ΠŸΡ€ΠΈ этом Π΅Ρ‘ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΊΠ°ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Ρ‚ΡŒΡΡ, Ρ‚Π°ΠΊ ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ‚ΡŒΡΡ.

5. Π₯арактСристикой равноускорСнного двиТСния, ΠΏΠΎΠΌΠΈΠΌΠΎ скорости ΠΈ пСрСмСщСния, являСтся ускорСниС.

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. img 5a5ceaf0f1c75. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-img 5a5ceaf0f1c75. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° img 5a5ceaf0f1c75. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

УскорСниС Ρ‚Π΅Π»Π° ΠΏΡ€ΠΈ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ β€” вСкторная физичСская Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, равная ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ измСнСния скорости Ρ‚Π΅Π»Π° ΠΊ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΡƒ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Π·Π° ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ это ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ»ΠΎ.

НаправлСниС ускорСния совпадаСт с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ скорости двиТСния, Ссли ΠΌΠΎΠ΄ΡƒΠ»ΡŒ скорости увСличиваСтся, ускорСниС Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΎ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ скорости двиТСния, Ссли ΠΌΠΎΠ΄ΡƒΠ»ΡŒ скорости ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ.

7. Как Π²ΠΈΠ΄Π½ΠΎ ΠΈΠ· Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ скорости равноускорСнного двиТСния, ΠΎΠ½Π° Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎ зависит ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ зависимости модуля скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ являСтся прямая, ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π°Ρ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΡƒΠ³ΠΎΠ» с осью абсцисс (осью Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ). На рисункС 19 ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ зависимости модуля скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. img 5a5cefefa7f3f. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-img 5a5cefefa7f3f. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° img 5a5cefefa7f3f. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

Π“Ρ€Π°Ρ„ΠΈΠΊ 1 соотвСтствуСт двиТСнию Π±Π΅Π· Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ скорости с ускорСниСм, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΌ Ρ‚Π°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ; Π³Ρ€Π°Ρ„ΠΈΠΊ 2 β€” двиТСнию с Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ \( v_ <02>\) ΠΈ с ускорСниСм, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΌ Ρ‚Π°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ; Π³Ρ€Π°Ρ„ΠΈΠΊ 3 β€” двиТСнию с Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ \( v_ <03>\) ΠΈ с ускорСниСм, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΌ Π² сторону, ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡƒΡŽ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ скорости.

8. На рисункС ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ зависимости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ скорости равноускорСнного двиТСния ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (рис. 20).

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. img 5a5cf0bddb651. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-img 5a5cf0bddb651. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° img 5a5cf0bddb651. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

9. На рисункС 21 ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ зависимости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ускорСния равноускорСнного двиТСния ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. img 5a5cf0f69149b. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-img 5a5cf0f69149b. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° img 5a5cf0f69149b. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

Π“Ρ€Π°Ρ„ΠΈΠΊ 1 соотвСтствуСт двиТСнию, проСкция ускорСния ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°, Π³Ρ€Π°Ρ„ΠΈΠΊ 2 β€” двиТСнию, проСкция ускорСния ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π°.

10. Π€ΠΎΡ€ΠΌΡƒΠ»Ρƒ пСрСмСщСния Ρ‚Π΅Π»Π° ΠΏΡ€ΠΈ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π³Ρ€Π°Ρ„ΠΈΠΊ зависимости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ скорости этого двиТСния ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (рис. 22).

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. img 5a5cf2251c567. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-img 5a5cf2251c567. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° img 5a5cf2251c567. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

Π’Ρ‹Π΄Π΅Π»ΠΈΠΌ Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ ΠΌΠ°Π»Ρ‹ΠΉ участок ​ \( ab \) ​ ΠΈ опустим пСрпСндикуляры ΠΈΠ· точСк​ \( a \) ​ ΠΈ ​ \( b \) ​ Π½Π° ось абсцисс. Если ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ​ \( \Delta\) ​, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΉ участку ​ \( cd \) ​ Π½Π° оси абсцисс ΠΌΠ°Π», Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ этого ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ° Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π½Π΅ измСняСтся ΠΈ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ. Π’ этом случаС Ρ„ΠΈΠ³ΡƒΡ€Π° ​ \( cabd \) ​ ΠΌΠ°Π»ΠΎ отличаСтся ΠΎΡ‚ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΈ Π΅Ρ‘ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ числСнно Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ пСрСмСщСния Ρ‚Π΅Π»Π° Π·Π° врСмя, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΡƒ ​ \( cd \) ​.

На Ρ‚Π°ΠΊΠΈΠ΅ полоски ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π±ΠΈΡ‚ΡŒ всю Ρ„ΠΈΠ³ΡƒΡ€Ρƒ ΠžΠΠ’Π‘, ΠΈ Π΅Ρ‘ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ€Π°Π²Π½Π° суммС ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ всСх полосок. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, проСкция пСрСмСщСния Ρ‚Π΅Π»Π° Π·Π° врСмя ​ \( t \) ​ числСнно Ρ€Π°Π²Π½Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠžΠΠ’Π‘. ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ полусуммы Π΅Ρ‘ оснований Π½Π° высоту: ​ \( S_x= \frac<1><2>(OA+BC)OC \) ​.

ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° позволяСт ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ (ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ) Ρ‚Π΅Π»Π° Π² любой ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Ссли извСстны Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ, Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° ΠΈ ускорСниС.

Если Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ, Ρ‚ΠΎ: ​ \( v^2_x=2a_xs_x \) ​.

ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° позволяСт Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Ρ‚ΠΎΡ€ΠΌΠΎΠ·Π½ΠΎΠΉ ΠΏΡƒΡ‚ΡŒ транспортных срСдств, Ρ‚.Π΅. ΠΏΡƒΡ‚ΡŒ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΡ€ΠΎΠ΅Π·ΠΆΠ°Π΅Ρ‚, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ Π΄ΠΎ ΠΏΠΎΠ»Π½ΠΎΠΉ остановки. ΠŸΡ€ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ускорСнии двиТСния, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ зависит ΠΎΡ‚ массы автомобиля ΠΈ силы тяги двигатСля, Ρ‚ΠΎΡ€ΠΌΠΎΠ·Π½ΠΎΠΉ ΠΏΡƒΡ‚ΡŒ Ρ‚Π΅ΠΌ большС, Ρ‡Π΅ΠΌ большС Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ автомобиля.

ΠŸΠ Π˜ΠœΠ•Π Π« Π—ΠΠ”ΠΠΠ˜Π™

Π§Π°ΡΡ‚ΡŒ 1

1. HΠ° рисункС ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ зависимости ΠΏΡƒΡ‚ΠΈ ΠΈ скорости Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Какой Π³Ρ€Π°Ρ„ΠΈΠΊ соотвСтствуСт равноускорСнному двиТСнию?

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. img 5a5dbab295718. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-img 5a5dbab295718. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° img 5a5dbab295718. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

2. ΠΠ²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ, Π½Π°Ρ‡Π°Π² Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ ΠΈΠ· состояния покоя Π½ΠΎ прямолинСйной Π΄ΠΎΡ€ΠΎΠ³Π΅, Π·Π° 10 с ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Π» ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ 20 ΠΌ/с. Π§Π΅ΠΌΡƒ Ρ€Π°Π²Π½ΠΎ ускорСниС автомобиля?

1) 200 м/с 2
2) 20 м/с 2
3) 2 м/с 2
4) 0,5 м/с 2

3. На рисунках прСдставлСны Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ зависимости ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ для Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ… Ρ‚Π΅Π», двиТущихся вдоль оси ​ \( Оx \) ​. Π£ ΠΊΠ°ΠΊΠΎΠ³ΠΎ ΠΈΠ· Ρ‚Π΅Π» Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ​ \( t_1 \) ​ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ двиТСния Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ?

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. img 5a5dbb7d03c83. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-img 5a5dbb7d03c83. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° img 5a5dbb7d03c83. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

4. На рисункС прСдставлСн Π³Ρ€Π°Ρ„ΠΈΠΊ зависимости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ускорСния ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ для Ρ‚Π΅Π»Π°, двиТущСгося прямолинСйно вдоль оси ​ \( Оx \) ​.

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. img 5a5dbbcc18911. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-img 5a5dbbcc18911. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° img 5a5dbbcc18911. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

РавноускорСнному двиТСнию соотвСтствуСт участок

1) Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ОА
2) Ρ‚ΠΎΠ»ΡŒΠΊΠΎ АВ
3) Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ОА ΠΈ Π’Π‘
4) Ρ‚ΠΎΠ»ΡŒΠΊΠΎ CD

5. ΠŸΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ равноускорСнного двиТСния измСряли ΠΏΡƒΡ‚ΡŒ, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ Ρ‚Π΅Π»ΠΎΠΌ ΠΈΠ· состояния покоя Π·Π° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (Π·Π° ΠΏΠ΅Ρ€Π²ΡƒΡŽ сСкунду, Π·Π° Π²Ρ‚ΠΎΡ€ΡƒΡŽ сСкунду ΠΈ Ρ‚.Π΄.). ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅.

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. img 5a5dbc122f412. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-img 5a5dbc122f412. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° img 5a5dbc122f412. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

Π§Π΅ΠΌΡƒ Ρ€Π°Π²Π΅Π½ ΠΏΡƒΡ‚ΡŒ, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ Ρ‚Π΅Π»ΠΎΠΌ Π·Π° Ρ‚Ρ€Π΅Ρ‚ΡŒΡŽ сСкунду?

1) 4 ΠΌ
2) 4,5 ΠΌ
3) 5 ΠΌ
4) 9 ΠΌ

6. На рисункС прСдставлСны Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ зависимости скорости двиТСния ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ для Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ… Ρ‚Π΅Π». Π’Π΅Π»Π° двиТутся ΠΏΠΎ прямой.

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. img 5a5dbc41011b6. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-img 5a5dbc41011b6. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° img 5a5dbc41011b6. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

Для ΠΊΠ°ΠΊΠΎΠ³ΠΎ(-ΠΈΡ…) ΠΈΠ· Ρ‚Π΅Π» β€” 1, 2, 3 ΠΈΠ»ΠΈ 4 β€” Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ скорости?

1) Ρ‚ΠΎΠ»ΡŒΠΊΠΎ 1
2) Ρ‚ΠΎΠ»ΡŒΠΊΠΎ 2
3) Ρ‚ΠΎΠ»ΡŒΠΊΠΎ 4
4) 3 ΠΈ 4

7. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π³Ρ€Π°Ρ„ΠΈΠΊ зависимости скорости двиТСния Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅ Π΅Π³ΠΎ ускорСниС.

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. img 5a5dbc5f0054d. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-img 5a5dbc5f0054d. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° img 5a5dbc5f0054d. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

8. ΠŸΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ равноускорСнного двиТСния измСряли ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹Π΅ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅, ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅. Π§Π΅ΠΌΡƒ Ρ€Π°Π²Π½Π° ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ 3 с?

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. img 5a5dbc922d158. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-img 5a5dbc922d158. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° img 5a5dbc922d158. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

1) 0 м/с
2) 2 м/с
3) 4 м/с
4) 14 м/с

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. img 5a5dbcbc5dce1. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-img 5a5dbcbc5dce1. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° img 5a5dbcbc5dce1. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

10. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π³Ρ€Π°Ρ„ΠΈΠΊ зависимости скорости двиТСния Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² ΠΊΠΎΠ½Ρ†Π΅ 30-ΠΉ сСкунды. Π‘Ρ‡ΠΈΡ‚Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ двиТСния Ρ‚Π΅Π»Π° Π½Π΅ измСнился.

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. img 5a5dbce01a0d5. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-img 5a5dbce01a0d5. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° img 5a5dbce01a0d5. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

1) 14 м/с
2) 20 м/с
3) 62 м/с
4) 69,5 м/с

11. Π”Π²Π° Ρ‚Π΅Π»Π° двиТутся ΠΏΠΎ оси ​ \( Оx \) ​. На рисункС прСдставлСны Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ зависимости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ скорости двиТСния Ρ‚Π΅Π» 1 ΠΈ 2 ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. img 5a5dbd0d94683. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-img 5a5dbd0d94683. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° img 5a5dbd0d94683. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π΄Π°Π½Π½Ρ‹Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°, Π²Ρ‹Π±Π΅Ρ€ΠΈΡ‚Π΅ ΠΈΠ· ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ пСрСчня Π΄Π²Π° Π²Π΅Ρ€Π½Ρ‹Ρ… утвСрТдСния. Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ ΠΈΡ… Π½ΠΎΠΌΠ΅Ρ€Π°.

1) Π’ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ​ \( t_3-t_5 \) ​ Ρ‚Π΅Π»ΠΎ 2 двиТСтся равноускорСнно.
2) К ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρƒ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ​ \( t_2 \) ​ ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° двиТСния Ρ‚Π΅Π»Π° ΠΏΡ€ΠΎΡˆΠ»ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΏΡƒΡ‚ΠΈ.
3) Π’ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ​ \( 0-t_3 \) ​ Ρ‚Π΅Π»ΠΎ 2 находится Π² ΠΏΠΎΠΊΠΎΠ΅.
4) Π’ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ​ \( t_5 \) ​ Ρ‚Π΅Π»ΠΎ 1 останавливаСтся.
5) Π’ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ​ \( t_3-t_4 \) ​ ускорСниС ​ \( a_x \) ​ Ρ‚Π΅Π»Π° 1 ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ.

12. На рисункС прСдставлСн Π³Ρ€Π°Ρ„ΠΈΠΊ зависимости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ для Ρ‚Π΅Π»Π°, двиТущСгося вдоль оси ΠžΡ….

ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. img 5a5dbda3661d6. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎ. ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ-img 5a5dbda3661d6. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° img 5a5dbda3661d6. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС равноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°). Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ускорСниС камня Ρ€Π°Π²Π½ΠΎ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ свободного падСния . Для кинСматичСского описания двиТСния камня систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½Π° ΠΈΠ· осСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось OY, Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ускорСния. Π’ΠΎΠ³Π΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ сумму Π΄Π²ΡƒΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – прямолинСйного равноускорСнного двиТСния вдоль оси OY ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π² пСрпСндикулярном Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚. Π΅. вдоль оси OX (рис. 1.4.1).

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π΄Π°Π½Π½Ρ‹Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°, Π²Ρ‹Π±Π΅Ρ€ΠΈΡ‚Π΅ ΠΈΠ· ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ пСрСчня Π΄Π²Π° Π²Π΅Ρ€Π½Ρ‹Ρ… утвСрТдСния. Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ ΠΈΡ… Π½ΠΎΠΌΠ΅Ρ€Π°.

1) Участок ОА соотвСтствуСт ускорСнному двиТСнию Ρ‚Π΅Π»Π°.
2) Участок АВ соотвСтствуСт ΡΠΎΡΡ‚ΠΎΡΠ½ΠΈΡŽ покоя Ρ‚Π΅Π»Π°.
3) Π’ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ​ \( t_1 \) ​ Ρ‚Π΅Π»ΠΎ ΠΈΠΌΠ΅Π»ΠΎ максимальноС ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ускорСниС.
4) ΠœΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ​ \( t_3 \) ​ соотвСтствуСт остановкС Ρ‚Π΅Π»Π°.
5) Π’ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ​ \( t_2 \) ​ Ρ‚Π΅Π»ΠΎ ΠΈΠΌΠ΅Π»ΠΎ максимальноС ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ускорСниС.

Π§Π°ΡΡ‚ΡŒ 2

13. Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ для Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ‚Π΅Π»Π° описываСтся ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ ​ \( x=12t-t^2 \) ​. Π’ ΠΊΠ°ΠΊΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ двиТСния Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ?

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *