почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный

Почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный

Какое преобразование энергии происходит в термоэлементе? Ответ поясните.

Рассмотрим цепь, составленную из проводников, изготовленных из разных металлов (см. рисунок). Если места спаев металлов находятся при одной температуре, то тока в цепи не наблюдается. Положение станет совершенно иным, если мы нагреем какой-нибудь из спаев, например, спай a. В этом случае гальванометр показывает наличие в цепи электрического тока, протекающего всё время, пока существует разность температур между спаями a и b.

Значение силы тока, протекающего в цепи, приблизительно пропорционально разности температур спаев. Направление тока зависит от того, какой из спаев находится при более высокой температуре. Если спай a не нагревать, а охлаждать (поместить, например, в сухой лёд), то ток потечёт в обратном направлении.

Описанное явление было открыто в 1821 г. немецким физиком Зеебеком и получило название термоэлектричества, а всякую комбинацию проводников из разных металлов, образующих замкнутую цепь, называют термоэлементом.

Важным применением металлических термоэлементов является их использование для измерения температуры. Термоэлементы, используемые для измерения температуры (так называемые термопары), обладают перед обычными жидкостными термометрами рядом преимуществ: термопары можно использовать для измерения как очень высоких (до 2000°С), так и очень низких температур. Более того, термопары дают более высокую точность измерения температуры и гораздо быстрее реагируют на изменение температуры.

1) замкнутая цепь, состоящая из комбинации металлических проводников и гальванометра.

2) явление протекания электрического тока в замкнутой цепи, состоящей из разных металлов, при возникновении разности температур спаев.

3) явление протекания электрического тока в замкнутой цепи, состоящей из разных металлов.

4) замкнутая цепь, состоящая из комбинации проводников из разных металлов.

Термоэлемент представляет собой замкнутую цепь, состоящую из двух проводников, изготовленных из разных металлов.

Источник

Почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный

Какое преобразование энергии происходит в термоэлементе? Ответ поясните.

Рассмотрим цепь, составленную из проводников, изготовленных из разных металлов (см. рисунок). Если места спаев металлов находятся при одной температуре, то тока в цепи не наблюдается. Положение станет совершенно иным, если мы нагреем какой-нибудь из спаев, например, спай a. В этом случае гальванометр показывает наличие в цепи электрического тока, протекающего все время, пока существует разность температур между спаями a и b.

Рис. Цепь, состоящая из железного и двух медных проводников и гальванометра

Значение силы тока, протекающего в цепи, приблизительно пропорционально разности температур спаев. Направление тока зависит от того, какой из спаев находится при более высокой температуре. Если спай a не нагревать, а охлаждать (поместить, например, в сухой лед), то ток потечёт в обратном направлении.

Описанное явление было открыто в 1821 г. немецким физиком Зеебеком и получило название термоэлектричества, а всякую комбинацию проводников из разных металлов, образующих замкнутую цепь, называют термоэлементом.

Важным применением металлических термоэлементов является их использование для измерения температуры. Термоэлементы, используемые для измерения температуры (так называемые термопары), обладают перед обычными жидкостными термометрами рядом преимуществ: термопары можно использовать для измерения как очень высоких (до 2000°С), так и очень низких температур. Более того, термопары дают более высокую точность измерения температуры и гораздо быстрее реагируют на изменение температуры.

Образец возможного ответа

1) Внутренняя энергия преобразуется в электрическую.

2) При нагревании спаев термоэлемента изменяется их температура, а, следовательно, внутренняя энергия. При этом спаи нагревают до разной температуры. При соединении спаев в цепи термоэлемента появляется электрический ток, следовательно, внутренняя энергия спаев превращается в электрическую энергию.

Критерии оценивания выполнения заданияБаллы
Представлен правильный ответ на вопрос, и приведено достаточное обоснование, не содержащее ошибок.2
Представлен правильный ответ на поставленный вопрос, но его обоснование некорректно или отсутствует.

Представлены корректные рассуждения, приводящие к правильному ответу, но ответ явно не сформулирован.

1
Представлены общие рассуждения, не относящиеся к ответу на поставленный вопрос.

Ответ на вопрос неверен, независимо от того, что рассуждения правильны или неверны, или отсутствуют.

Источник

О термопарах: что это такое, принцип действия, подключение, применение

В автоматизации технологических процессов очень часто приходится снимать показатели о температурных изменениях, для их загрузки в системы управления, с целью дальнейшей обработки. Для этого требуются высокоточные, малоинерционные датчики, способные выдерживать большие температурные нагрузки в определённом диапазоне измерений. В качестве термоэлектрического преобразователя широко используются термопары – дифференциальные устройства, преобразующие тепловую энергию в электрическую.

Устройства также являются простым и удобным датчиком температуры для термоэлектрического термометра, предназначенного для осуществления точных измерений в пределах довольно широких температурных диапазонов. В частности, управляющая автоматика газовых котлов и других отопительных систем срабатывает от электрического сигнала, поступающего от сенсора на базе термопары. Конструкции датчика обеспечивают необходимую точность измерений в выбранном диапазоне температур.

Устройство и принцип действия

Термопара конструктивно состоит из двух проволок, каждая из которых изготовлена из разных сплавов. Концы этих проводников образуют контакт (горячий спай) выполненный путём скручивания, с помощью узкого сварочного шва либо сваркой встык. Свободные концы термопары замыкаются с помощью компенсационных проводов на контакты измерительного прибора или соединяются с автоматическим устройством управления. В точках соединения образуется другой, так называемый, холодный спай. Схематически устройство изображено на рисунке 1.

почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный. shema stroeniya termopary. почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный фото. почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный-shema stroeniya termopary. картинка почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный. картинка shema stroeniya termopary. Какое преобразование энергии происходит в термоэлементе? Ответ поясните. Рис. 1. Схема строения термопары

Красным цветом выделено зону горячего спая, синим – холодный спай.

Электроды состоят из разных металлов (металл А и металл В), которые на схеме окрашены в разные цвета. С целью защиты термоэлектродов от агрессивной горячей среды их помещают в герметичную капсулу, заполненную инертным газом или жидкостью. Иногда на электроды надевают керамические бусы, как показано на рис. 2).

почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный. termopara s keramicheskimi busami. почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный фото. почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный-termopara s keramicheskimi busami. картинка почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный. картинка termopara s keramicheskimi busami. Какое преобразование энергии происходит в термоэлементе? Ответ поясните. Рис. 2. Термопара с керамическими бусами

Принцип действия основан на термоэлектрическом эффекте. При замыкании цепи, например милливольтметром (см. рис. 3) в точках спаек возникает термо-ЭДС. Но если контакты электродов находятся при одинаковой температуре, то эти ЭДС компенсируют друг друга и ток не возникает. Однако, стоит нагреть место горячей спайки горелкой, то согласно эффекту Зеебека возникнет разница потенциалов, поддерживающая существование электрического тока в цепи.

почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный. izmerenie napryazheniya na provodah tp. почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный фото. почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный-izmerenie napryazheniya na provodah tp. картинка почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный. картинка izmerenie napryazheniya na provodah tp. Какое преобразование энергии происходит в термоэлементе? Ответ поясните. Рис. 3. Измерение напряжения на проводах ТП

Примечательно, что напряжение на холодных концах электродов пропорционально зависит от температуры в области горячей спайки. Другими словами, в определённом диапазоне температур мы наблюдаем линейную термоэлектрическую характеристику, отображающую зависимость напряжения от величины разности температур между точками горячей и холодной спайки. Строго говоря, о линейности показателей можно говорить лишь в том случае, когда температура в области холодной спайки постоянна. Это следует учитывать при выполнении градуировок термопар. Если на холодных концах электродов температура будет изменяться, то погрешность измерения может оказаться довольно значительной.

В тех случаях, когда необходимо добиться высокой точности показателей, холодные спайки измерительных преобразователей помещают даже в специальные камеры, в которых температурная среда поддерживается на одном уровне специальными электронными устройствами, использующими данные термометра сопротивления (схема показана на рис. 4). При таком подходе можно добиться точности измерений с погрешностью до ± 0,01 °С. Правда, такая высокая точность нужна лишь в немногих технологических процессах. В ряде случаев требования не такие жёсткие и погрешность может быть на порядок ниже.

почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный. reshenie voprosa tochnosti pokazanij termopar. почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный фото. почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный-reshenie voprosa tochnosti pokazanij termopar. картинка почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный. картинка reshenie voprosa tochnosti pokazanij termopar. Какое преобразование энергии происходит в термоэлементе? Ответ поясните. Рис. 4. Решение вопроса точности показаний термопар

На погрешность влияют не только перепады температуры в среде, окружающей холодную спайку. Точность показаний зависит от типа конструкции, схемы подключения проводников, и некоторых других параметров.

Типы термопар и их характеристики

Различные сплавы, используемые для изготовления термопар, обладают разными коэффициентами термо-ЭДС. В зависимости от того, из каких металлов изготовлены термоэлектроды, различают следующие основные типы термопар:

Технические требования к термопарам задаются параметрами определёнными ГОСТ 6616-94, а их НСХ (номинальные статические характеристики преобразования), оптимальные диапазоны измерений, установленные классы допуска регулируются стандартами МЭК 62460, и определены ГОСТ Р 8.585-2001. Заметим, также, что НСХ в вольфрам-рениевых термопарах отсутствовали в таблицах МЭК до 2008 г. На сегодняшний день указанными стандартами не определены характеристики термопары хромель-копель, но их параметры по прежнему регулируются ГОСТ Р 8.585-2001. Поэтому импортные термопары типа L не являются полным аналогом отечественного изделия ТХК.

Классификацию термодатчиков можно провести и по другим признакам: по типу спаев, количеству чувствительных элементов.

Типы спаев

В зависимости от назначения термодатчика спаи термопар могут иметь различную конфигурацию. Существуют одноэлементные и двухэлементные спаи. Они могут быть как заземлёнными на корпус колбы, так и незаземленными. Понять схемы таких конструкций можно из рисунка 5.

Буквами обозначено:

Заземление на корпус снижает инерционность термопары, что, в свою очередь, повышает быстродействие датчика и увеличивает точность измерений в режиме реального времени.

С целью уменьшения инерционности в некоторых моделях термоэлектрических преобразователей оставляют горячий спай снаружи защитной колбы.

Многоточечные термопары

Часто требуется измерение температуры в различных точках одновременно. Многоточечные термопары решают эту проблему: они фиксируют данные о температуре вдоль оси преобразователя. Такая необходимость возникает в химических и нефтехимических отраслях, где требуется получать информацию о распределении температуры в реакторах, колоннах фракционирования и в других ёмкостях, предназначенных для переработки жидкостей химическим способом.

Многоточечные измерительные преобразователи температуры повышают экономичность, не требуют сложного обслуживания. Количество точек сбора данных может достигать до 60. При этом используется только одна колба и одна точка ввода в установку.

Таблица сравнения термопар

Выше мы рассмотрели типы термоэлектрических преобразователей. У читателя, скорее всего, резонно возник вопрос: Почему так много типов термопар существует?

Дело в том, что заявленная производителем точность измерений возможна только в определённом интервале температур. Именно в этом диапазоне производитель гарантирует линейную характеристику своего изделия. В других диапазонах зависимость напряжения от температуры может быть нелинейной, а это обязательно отобразится на точности. Следует учитывать, что материалы обладают разной степенью плавкости, поэтому для них существует предельное значение рабочих температур.

Для сравнения термопар составлены таблицы, в которых отображены основные параметры измерительных преобразователей. В качестве примера приводим один из вариантов таблицы для сравнения распространённых термопар.

Тип термопарыKJNRSBTE
Материал положительного электродаCr—NiFeNi—Cr—SiPt—Rh (13 % Rh)Pt—Rh (10 % Rh)Pt—Rh (30 % Rh)CuCr—Ni
Материал отрицательного электродаNi—AlCu—NiNi—Si—MgPtPtPt—Rh (6 % RhCu—NiCu—Ni
Температурный коэффициент40…4155.268
Рабочий температурный диапазон, ºC0 до +11000 до +7000 до +11000 до +16000 до 1600+200 до +1700−185 до +3000 до +800
Значения предельных температур, ºС−180; +1300−180; +800−270; +1300– 50; +1600−50; +17500; +1820−250; +400−40; +900
Класс точности 1, в соответствующем диапазоне температур, (°C)±1,5 от −40 °C до 375 °C±1,5 от −40 °C до 375 °C±1,5 от −40 °C до 375 °C±1,0 от 0 °C до 1100 °C±1,0 от 0 °C до 1100 °C±0,5 от −40 °C до 125 °C±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 1000 °C±0,004×T от 375 °C до 750 °C±0,004×T от 375 °C до 1000 °C±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 °C±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 °±0,004×T от 125 °C до 350 °C±0,004×T от 375 °C до 800 °C
Класс точности 2 в соответствующем диапазоне температур, (°C)±2,5 от −40 °C до 333 °C±2,5 от −40 °C до 333 °C±2,5 от −40 °C до 333 °C±1,5 от 0 °C до 600 °C±1,5 от 0 °C до 600 °C±0,0025×T от 600 °C до 1700 °C±1,0 от −40 °C до 133 °C±2,5 от −40 °C до 333 °C
±0,0075×T от 333 °C до 1200 °C±0, T от 333 °C до 750 °C±0,0075×T от 333 °C до 1200 °C±0,0025×T от 600 °C до 1600 °C±0,0025×T от 600 °C до 1600 °C±0,0075×T от 133 °C до 350 °C±0,0075×T от 333 °C до 900 °C
Цветовая маркировка выводов по МЭКЗелёный — белыйЧёрный — белыйСиреневый — белыйОранжевый — белыйОранжевый — белыйОтсутствуетКоричневый — белыйФиолетовый — белый

Способы подключения

Каждая новая точка соединения проводов из разнородных металлов образует холодный спай, что может повлиять на точность показаний. Поэтому подключения термопары выполняют, по возможности, проводами из того же материала, что и электроды. Обычно производители поставляют изделия с подсоединёнными компенсационными проводами.

Некоторые измерительные приборы содержат схемы корректировки показаний на основе встроенного термистора. К таким приборам просто подключаются провода, соблюдая их полярность (см. рис. 6).

почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный. kompensacionnye provoda. почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный фото. почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный-kompensacionnye provoda. картинка почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный. картинка kompensacionnye provoda. Какое преобразование энергии происходит в термоэлементе? Ответ поясните. Рис. 6. Компенсационные провода

Часто используют схему подключения «на разрыв». Измерительный прибор, подключают через проводник того же типа что и клеммы (чаще всего медь). Таким образом, в местах соединения отсутствует холодный спай. Он образуется лишь в одном месте: в точке присоединения провода к электроду термопары. На рисунке 7 показана схема такого подключения.

почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный. shema podklyucheniya na razryv. почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный фото. почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный-shema podklyucheniya na razryv. картинка почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный. картинка shema podklyucheniya na razryv. Какое преобразование энергии происходит в термоэлементе? Ответ поясните. Рис. 7. Схема подключения на разрыв

При подключении термопары следует как можно ближе размещать измерительные системы, чтобы избежать использования слишком длинных проводов. Во всяком проводе возможны помехи, которые усиливаются с увеличением длины проволоки. Если от радиопомех можно избавиться путём экранирования проводки, то бороться с токами наводки гораздо сложнее.

В некоторых схемах используют компенсирующий терморезистор между контактом измерительного прибора и точкой холодного спая. Поскольку внешняя температура одинаково влияет на резистор и на свободный спай, то данный элемент будет корректировать такие воздействия.

И напоследок: подключив термопару к измерительному прибору, необходимо, пользуясь градуировочными таблицами, выполнить процедуру калибровки.

Применение

Термопары используются везде, где требуется измерение температуры в технологической среде. Они применяются в автоматизированных системах управления в качестве датчиков температуры. Термопары типа ТВР, у которых внушительный диаметр термоэлектрода, незаменимы там, где требуется получать данные о слишком высокой температуре, в частности в металлургии.

Газовые котлы, конвекторы, водонагревательные колонки также оборудованы термоэлектрическими преобразователями.

Преимущества

Недостатки

Недостатками изделий являются факторы:

Благодаря тому, что проблемы связанные с недостатками решаемы, применение термопар более чем оправдано.

Источник

Что такое термопара и как она работает?

почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный. ar240820 15. почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный фото. почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный-ar240820 15. картинка почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный. картинка ar240820 15. Какое преобразование энергии происходит в термоэлементе? Ответ поясните.

Какая связь между электричеством и теплом?

Между тем, как металл проводит тепло, и тем, как он проводит электричество, существует прямая связь.

Томас Зеебек и термоэлектрический эффект

Предположим, вы воткнете железный пруток в огонь. Вы поймете, что нужно отпустить его довольно быстро, потому что тепло будет подниматься по металлу от огня к вашим пальцам. Но знаете ли вы, что электричество тоже идет по нагретому прутку? Первым, кто правильно подхватил эту идею, был немецкий физик Томас Зеебек (1770–1831), который обнаружил, что если два конца металла будут иметь разную температуру, через них будет протекать электрический ток. Это один из способов обозначить то, что сейчас известно как эффект Зеебека или термоэлектрический эффект. По мере дальнейшего исследования Зеебек обнаружил, что все еще интереснее. Если он соединял два конца металла вместе, ток не протекал; аналогично, если два конца металла имели одинаковую температуру, ток не протекал.

почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный. ar240820 16. почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный фото. почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный-ar240820 16. картинка почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный. картинка ar240820 16. Какое преобразование энергии происходит в термоэлементе? Ответ поясните.

Основная идея термопары: два разнородных металла (серые кривые) соединены на двух концах. Если один конец термопары поместить на что-то горячее (горячий спай), а другой конец на что-то холодное (холодный спай), возникает напряжение (разность потенциалов). Вы можете измерить его, поместив вольтметр (V) через два соединения.

Зеебек повторил эксперимент с другими металлами, а затем попытался использовать вместе два разных металла. Теперь, если способ протекания электричества или тепла через металл зависит от внутренней структуры материала, вы, вероятно, можете увидеть, что два разных металла будут производить разное количество электричества, когда они нагреваются до одной температуры. Так что, если вы возьмете полосу одинаковой длины из двух разных металлов и соедините их вместе двумя концами, чтобы получилась петля. Затем окуните один конец (одно из двух стыков) во что-нибудь горячее (например, стакан с кипящей водой), а другой конец (другой стык) во что-то холодное. Тогда вы обнаружите, что электрический ток течет через петлю (которая фактически представляет собой электрическую цепь), и величина этого тока напрямую связана с разницей в температуре между двумя переходами.

Ключевой момент, который следует помнить об эффекте Зеебека, заключается в том, что величина создаваемого напряжения или тока зависит только от типа металла (или металлов), а также от разницы температур. Для создания эффекта Зеебека не нужно соединение между разными металлами: только разница температур. Однако на практике в термопарах используются металлические переходы.

Почему возникает эффект Зеебека?

Измерение температуры с помощью термопары

Просто поместите один из металлических концов в ванну со льдом (или что-нибудь еще с точно известной температурой). Поместите другой металлический стык на предмет, температуру которого вы хотите узнать. Теперь измерьте происходящее изменение напряжения и, используя формулу, которую вы вычислили ранее, вы можете точно рассчитать температуру вашего объекта. Гениально! У нас есть пара металлов, которые соединены для измерения тепла (что по-гречески называлось «термос»). Вот почему это называется термопарой.

Что такое термопары на практике?

Для чего используются термопары?

почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный. ar240820 17. почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный фото. почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный-ar240820 17. картинка почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный. картинка ar240820 17. Какое преобразование энергии происходит в термоэлементе? Ответ поясните.

Термопары широко используются в науке и промышленности, потому что они, как правило, очень точны и могут работать в огромном диапазоне действительно высоких и низких температур. Поскольку они генерируют электрические токи, они также полезны для автоматизированных измерений: гораздо проще получить электронную схему или компьютер для измерения температуры термопары через определенные промежутки времени, чем делать это самостоятельно с помощью термометра. Поскольку в них нет ничего особенного, кроме пары металлических полос, термопары также относительно недороги и (при условии, что используемые металлы имеют достаточно высокую температуру плавления) достаточно долговечны, чтобы работать в довольно суровых условиях.

Для нагревательных систем термопары являются незаменимым инструментом, который позволяет измерять показатели температуры системы, нагревательных элементов, обрабатываемых материалов. К примеру, на экструзионных линиях термопары устанавливаются на каждый кольцевой нагреватель, греющий цилиндр экструдера, в каждую зону нагрева для измерения температуры расплава, в фильеру для определения температуры на выходе.

Источник

Рекомендации по выбору термопары для разной среды применения

почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный. termopara 01. почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный фото. почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный-termopara 01. картинка почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный. картинка termopara 01. Какое преобразование энергии происходит в термоэлементе? Ответ поясните.

1. Термопара типа К

Основной составляющей есть хромель и алюминий.

При температурах в пределе 200-500 °С возможен эффект гистерезиса (показатели температуры могут разниться до 5°С).

Функционирует в нейтральной среде либо с наличием избыточного кислорода.

После того, как проходит рекомендуемый срок эксплуатации показания могут быть сниженными. Термо-ЭДС в разряженном воздухе может изменяться. Термопара выдает заниженные показатели из-за выделения выводами хрома.

Объект нагрева, в котором присутствуют серные испарения, также неблагоприятен для использования данного типа измерительного устройства.

2. Термопара типа L

Основными составляющими есть хромель и копель.

3. Термопара типа Е

Основными составляющими есть хромель и константан.

Характеризуется высокой чувствительностью к термическим изменениям.

Электроды выполнены из термоэлектрических материалов однородной консистенции.

4. Термопара типа Т

Состоит из меди и константана.

Качественно измеряет температуры от – 250 °С до + 300 °С.

Работоспособность не нарушается даже в среде с избыточной или недостаточной влажностью.

Нежелательно эксплуатировать термопару типа Т при показателях более 400 °С.

Не реагирует на повышение влажности.

Оба вывода можно отжигать с целью удаления выделившихся веществ термоэлектрической неоднородности.

5. Термопара типа J

Основными элементами в составе выступают железо и константан. При использовании во влажной среде металлический вывод может покрываться коррозией. Отлично справляется с работой в разряженной среде.

Применять можно при температуре до – 500 °С. Использовать термопару J при более высоких температурных диапазонах нежелательно, так как выводы поддаются окислению.

В серосодержащем пространстве оба вывода из-за разрушений очень быстро выходят из строя.

По окончанию термического срока годности (старения) может показывать завышенные температурные значения.

Сравнительно с аналогами из дорогостоящих материалов эта термопара выделяется еще и низкой стоимостью.

Состав из железа и копели может использоваться для измерения температур от 0 до 760 °C.

6. Термопара типа А

В состав входят вольфраморениевые сплавы ВР разной концентрации. Данный тип пригоден для измерений в инертной среде при термической выработке от 0 до 2500 °C.

7. Термопара типа N

В составе находится нихросил и нисил. Произведено данное устройство по принципу «К» термопары. Слабой стороной данных сплавов есть быстрое загрязнение примесями при воздействии высоких температур. В период сплавки обоих электродов с кремнием можно загрязнить изделие заранее, и тем самым снизить риски загрязнений во время эксплуатации.

Рекомендуется использовать для измерения температур до 1200 °С, более точные показатели зависят от диаметра проволоки.

Стабилен при температурной подаче от 200 до 500°С.

Обладает значительно меньшим гистерисом, чем тип К.

Относится к самым точным типам термопары класс неблагородных металлов.

почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный. termopara 02. почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный фото. почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный-termopara 02. картинка почему термопару можно использовать для измерения гораздо более низких температур чем жидкостный. картинка termopara 02. Какое преобразование энергии происходит в термоэлементе? Ответ поясните.

Виды термопар изготовленных из благородных металлов, характеристики и преимущества

1. Термопара типа В

Выводы состоят из платинородиевого сплава разной концентрации: в одном выводе родия 6%, а в другом 3%.

Максимально измеряемая температура 1500 °С.

В кратковременной работе можно использовать при температуре до 1750 °С.

При температуре больше 900 °С загрязняется медными, водородными и кремниевыми выделениями.

В работе с температурами больше 1000 °С получает кремниевый налет входящий в состав отдельных видов керамики. Желательно применять трубки из керамики качественного и чистого алюминиевого оксида.

Отлично справляется с работой в окисленной среде.

Нежелательно эксплуатировать при термических показателях менее 600 °С.

2. Термопара типа S

В состав проводников входят сплавы платинородия и платины.

Максимальный порядок измеряемых температур до 1350 °С.

Возможна кратковременная эксплуатация до 1600 °С.

Термопары типа S нельзя армировать оболочкой из стали. Изоляция электродов должна содержать газонепроницаемую керамику.

Можно использовать в окислительной среде.

Эксплуатация при 1000 °С провоцирует загрязнения кремнием, который выделяется из керамики. Как и для типа В лучше использовать изоляцию из высокочистого алюминиевого оксида.

Нежелательно эксплуатировать при термических показателях менее 400 °С.

3. Термопара типа R

Один вывод состоит из платинородия, а другой платиновый.

Характеристики полностью аналогичны типу S, отличия лишь в процентном соотношении сплавов.

Каждый тип термопары состоит из разных материалов и разной концентрации химических элементов. Материалы, применяемые для изготовления термопар, отличаются своими особенностями и по-разному реагируют на агрессивную среду. Для эффективного измерения температурных показателей, выбирая термопару, полагайтесь на условия ее эксплуатации и температуру которую она будет измерять.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *